<h3>Answer:</h3>
a) Moles of Caffeine = 1.0 × 10⁻⁴ mol
b) Moles of Ethanol = 4.5 × 10⁻³ mol
<h3>Solution:</h3>
Data Given:
Mass of Caffeine = 20 mg = 0.02 g
M.Mass of Caffeine = 194.19 g.mol⁻¹
Molecules of Ethanol = 2.72 × 10²¹
Calculate Moles of Caffeine as,
Moles = Mass ÷ M.Mass
Putting values,
Moles = 0.02 g ÷ 194.19 g.mol⁻¹
Moles = 1.0 × 10⁻⁴ mol
Calculate Moles of Ethanol as,
As we know one mole of any substance contains 6.022 × 10²³ particles (atoms, ions, molecules or formula units). This number is also called as Avogadro's Number.
The relation between Moles, Number of Particles and Avogadro's Number is given as,
Number of Moles = Number of Molecules ÷ 6.022 × 10²³
Putting values,
Number of Moles = 2.72 × 10²¹ Molecules ÷ 6.022 × 10²³
Number of Moles = 4.5 × 10⁻³ Moles
The answer is: absorbs more H (protons) ions.
- The Sodium hydroxide NaOH ionizes completely when dissolved in water.
- For every mole of sodium hydroxide that you dissolve you get 1 mole of hydroxide anions.
In exactly 1 mol Hg₂(NO₃)₂ , there are 2 mol Hg, 2 mol N and 6 mol O.
Since the molecular formula of Hg₂(NO₃)₂ shows that for every mole of the substance, we have 2 moles of Hg, 2 moles of N and 6 moles of O.
So, in exactly 1 mol Hg₂(NO₃)₂ , there are 2 mol Hg, 2 mol N and 6 mol O.
Learn more about number of moles here:
brainly.com/question/3935424
Answer:
vines or body vessels
Explanation:
Veins are vessels of the circulatory system that support circulation by conveying blood to the heart. Blood flowing through the circulatory system transports nutrients, oxygen, and water to cells throughout the body.
<span>Answer: option B. 3.07 g
Explanation:
1) given reaction:
S(s) + O₂ (g) → SO(g)
2) Balanced chemical equation:
</span><span>2S(s) + O₂ (g) → 2SO(g)
3) Theoretical mole ratios:
2 mol S : 1 mol O₂ : 2 mol SO
3) number of moles of 4.5 liter SO₂ at</span><span> 300°C and 101 kPa
use the ideal gas equation:
pV = nRT
with V = 4.5 liter
p = 101 kPa
T = 300 + 273.15 K = 573.15 K
R = 8.314 liter×kPa / (mol×K)
=> n = pV / (RT) =
n = [101 kPa × 4.5 liter] / [8.314 (liter×kPa) / (mol×K) × 573.15 K ]
n = 0.0954 mol SO
4) proportion with the theoretical ratio S / SO
2 mol S x
-------------- = ----------------------
2 mol SO 0.0954 mol SO
=> x = 0.0954 mol S.
5) Convert mol of S to grams by using atomic mass of S = 32.065 g/mol
mass = number of moles × atomic mass
mass = 0.0954 mol × 32.065 g/mol = 3.059 g of S
6) Therefore the answer is the option B. 3.07 g
</span>