When you have both of these ( The periodic table of elements and the formula of your compound) you are able to calculate the R.M.M ( Relative atomic mass) of that compound.
For example the formula of a NaCl ( Table salt ) has the elemnt Na and Cl.
We look at the atomic mass of both of these compounds
Na - 23
Cl - 35.5
R.M.M = 23 +35.5 = 58.5
Hope this helps :).
Answer:
count how many electrons it 'owns'
Answer:
pH = 12.80
[H3O+] = 1.58 * 10^-13 M
[OH-] = 0.063 M
Explanation:
Step 1: Data given
pOH = 1.20
Temperature = 25.0 °C
Step 2: Calulate pH
pH + pOH = 14
pH = 14 - pOH
pH = 14 - 1.20 = 12.80
Step 3: Calculate hydronium ion concentration
pH = -log[H+] = -log[H3O+]
12.80 = -log[H3O+]
10^-12.80 = [H3O+] = 1.58 * 10^-13 M
Step 4: Calculate the hydroxide ion concentration
pOH = 1.20 = -log [OH-]
10^-1.20 = [OH-] = 0.063M
Step 5: Control [H3O+] and [OH-]
[H3O+]*[OH-] = 1* 10^-14
1.58 *10^-13 * 0.063 = 1* 10^-14
Answer:
OptionA. 2C4H10 + 13O2 —> 8CO2 + 10H20
Explanation:
Butane burns is air (O2) according to the equation:
C4H10 + O2 —> CO2 + H20
Considering the equation, it is evident that it not balanced. Now let us balance the equation as shown below;
There are a total of 4 carbon atoms on the left and 1 carbon atom on the right. It can be balanced by putting 4 in front of CO2 as shown below:
C4H10 + O2 —> 4CO2 + H20
Next, there are 10 hydrogen atoms on the left and 2 hydrogen atoms on the right. Therefore to balance it, put 5 in front of H2O as shown below:
C4H10 + O2 —> 4CO2 + 5H20
Now, there are a total of 13 oxygen atoms on the right and 2 at the left. To balance it, put 13/2 in front of O2
as shown below
C4H10 + 13/2O2 —> 4CO2 + 5H20
Now we multiply through by 2 clear off the fraction and we obtained:
2C4H10 + 13O2 —> 8CO2 + 10H20