The location of the point F that partitions a line segment from D to E (
), that goes from <u>negative 4</u> to <u>positive 5,</u> into a 5:6 ratio is fifteen halves (option 4).
We need to calculate the segment of the line DE to find the location of point F.
Since point D is located at <u>negative -4</u> and point E is at <u>positive 5</u>, we have:

Hence, the segment of the line DE (
) is 9.
Knowing that point F partitions the line segment from D to E (
) into a <u>5:6 ratio</u>, its location would be:
Therefore, the location of point F is fifteen halves (option 4).
Learn more about segments here:
I hope it helps you!
Answer:
Because of height and lower atmospheric pressure.
Explanation:
Atmospheric pressure affects aerodynamic drag, lower pressure means less drag. At the altitude of Denver the air has lower pressure, this allows baseball players to hit balls further away.
Another aerodynamic effect is the Magnus effect. This effect causes spinning objects to curve their flightpath, which is what curveball pitchers do. A lower atmospheric pressure decreases the curving of the ball's trajectory.
Боже, как это сложно! Ну ладно.
Между прочим это ты сам должен делать, а то не куда не поступишь!
Answer:
Vf = 44.27 m/s
Explanation:
When a ball is dropped it is acted upon by gravitational force under free fall motion. So, in order to find its final speed we use 2rd equation of motion, as follows:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity = 9.8 m/s²
h = height lost = 100 m
Vf = Final Velocity = ?
Vi = Initial velocity = 0 m/s (Since, ball starts from rest)
Therefore,
(2)(9.8 m/s²)(100 m) = Vf² - (0 m/s)²
Vf = √(1960 m²/s²)
<u>Vf = 44.27 m/s</u>
Answer:
not work
Explanation:
in a series circuit, everything meaning the electrons are flowing on one path, therefore, it wouldn continue to work.