Answer:
5 I think will be none of the above and 6 could be all of the above
Answer:
The lowest possible frequency of sound for which this is possible is 1307.69 Hz
Explanation:
From the question, Abby is standing 5.00m in front of one of the speakers, perpendicular to the line joining the speakers.
First, we will determine his distance from the second speaker using the Pythagorean theorem
l₂ = √(2.00²+5.00²)
l₂ = √4+25
l₂ = √29
l₂ = 5.39 m
Hence, the path difference is
ΔL = l₂ - l₁
ΔL = 5.39 m - 5.00 m
ΔL = 0.39 m
From the formula for destructive interference
ΔL = (n+1/2)λ
where n is any integer and λ is the wavelength
n = 1 in this case, the lowest possible frequency corresponds to the largest wavelength, which corresponds to the smallest value of n.
Then,
0.39 = (1+ 1/2)λ
0.39 = (3/2)λ
0.39 = 1.5λ
∴ λ = 0.39/1.5
λ = 0.26 m
From
v = fλ
f = v/λ
f = 340 / 0.26
f = 1307.69 Hz
Hence, the lowest possible frequency of sound for which this is possible is 1307.69 Hz.
Answer:
6.57 m/s
Explanation:
First use Hook's Law to determine the F the compressed spring acts on the mass. Hook's Law F=kx; F=force, k=stiffnes of spring (or spring constant), x=displacement
F=kx; F=180(.3) = 54 N
Next from Newton's second law find the acceleration of the mass.
Newton's .2nd law F=ma; a=F/m ; a=54/.75 = 72m/s²
Now use the kinematic equation for velocity (or speed)
v₂²= v₀² + 2a(x₂-x₀); v₂=final velocity; v₀=initial velocity; a=acceleration; x₂=final displacement; x₀=initial displacment.
v₀=0, since the mass is at rest before we release it
a=72 m/s² (from above)
x₀=0 as the start position already compressed
x₂=0.3m (this puts the spring back to it's natural length)
v₂²= 0 + 2(72)(0.3) = 43.2 m²/s²
v₂= = 6.57 m/s
It will take 6.42 s for the ball that is dropped from a height of 206 m to reach the ground.
From the question given above, the following data were obtained:
Height (H) = 206 m
<h3>Time (t) =? </h3>
NOTE: Acceleration due to gravity (g) = 10 m/s²
The time taken for the ball to get to the ground can be obtained as follow:
H = ½gt²
206 = ½ × 10 × t²
206 = 5 × t²
Divide both side by 5
Take the square root of both side
<h3>t = 6.42 s</h3>
Therefore, it will take 6.42 s for the ball to get to the ground.
Learn more: brainly.com/question/24903556