1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
34kurt
3 years ago
6

What is albert einsteins contribution to the understanding of nucear energy?

Physics
2 answers:
masha68 [24]3 years ago
6 0

Answer:

He proposed that matter can be converted to energy and vice versa. He first discovered that nuclear-reaction products are lighter than the reactants. He developed the use of nuclear reactions to generate electricity

Explanation:

hope that answers your question

Afina-wow [57]3 years ago
3 0

Answer:

He was able to prove that matter and energy are inter-convertible, and mass may be used to measure the total energy present in an object.

Explanation:

He observed a mass defect in nuclear reaction products and the reactants. Thus, mass may be used to measure the total energy present in an object by the use of the equation;

                 E = m × c^{2}

Where: E is the energy, m is the mass and c is the constant speed of light.

He developed the use of nuclear reactions to generate heat energy, which has a great applications in atomic bombs.

You might be interested in
Kinetic energy is greatest when a roller coaster
mr Goodwill [35]
Hey Dave... you need to learn and I want you to improve I believe it to be at the bottom of the hill. Please read your siht homie
5 0
3 years ago
A friend is telling you about a type of high-energy, short-wavelength electromagnetic wave. She is MOST LIKELY to be talking abo
Masteriza [31]

Answer: A. X-rays

Explanation:

X-rays have the shortest wavelength and the highest energy of all of the options given.

4 0
4 years ago
A gas exerts less pressure when it has a
Vika [28.1K]
The molecules are continually colliding with each other and with the walls of the container. When a molecule collides with the wall, they exert<span> small force on the wall The </span>pressure exerted<span> by the </span>gas<span> is due to the sum of all these collision forces.The more particles that hit the walls, the higher the </span>pressure<span>.</span>
4 0
3 years ago
Will give correct answer brainliest​
lukranit [14]

Answer:

I THINK it’s A

Explanation:

Because all the other answers don’t make sense.

5 0
3 years ago
magine an astronaut on an extrasolar planet, standing on a sheer cliff 50.0 m high. She is so happy to be on a different planet,
Mama L [17]

Answer:

\Delta t=(\frac{20}{g'}+\sqrt{\frac{400}{g'^2}+\frac{100}{g'}  }  )-(\frac{20}{g}+\sqrt{\frac{400}{g^2}+\frac{100}{g}  }  )

Explanation:

Given:

height above which the rock is thrown up, \Delta h=50\ m

initial velocity of projection, u=20\ m.s^{-1}

let the gravity on the other planet be g'

The time taken by the rock to reach the top height on the exoplanet:

v=u+g'.t'

where:

v= final velocity at the top height = 0 m.s^{-1}

0=20-g'.t' (-ve sign to indicate that acceleration acts opposite to the velocity)

t'=\frac{20}{g'}\ s

The time taken by the rock to reach the top height on the earth:

v=u+g.t

0=20-g.t

t=\frac{20}{g} \ s

Height reached by the rock above the point of throwing on the exoplanet:

v^2=u^2+2g'.h'

where:

v= final velocity at the top height = 0 m.s^{-1}

0^2=20^2-2\times g'.h'

h'=\frac{200}{g'}\ m

Height reached by the rock above the point of throwing on the earth:

v^2=u^2+2g.h

0^2=20^2-2g.h

h=\frac{200}{g}\ m

The time taken by the rock to fall from the highest point to the ground on the exoplanet:

(50+h')=u.t_f'+\frac{1}{2} g'.t_f'^2 (during falling it falls below the cliff)

here:

u= initial velocity= 0 m.s^{-1}

\frac{200}{g'}+50 =0+\frac{1}{2} g'.t_f'^2

t_f'^2=\frac{400}{g'^2}+\frac{100}{g'}

t_f'=\sqrt{\frac{400}{g'^2}+\frac{100}{g'}  }

Similarly on earth:

t_f=\sqrt{\frac{400}{g^2}+\frac{100}{g}  }

Now the required time difference:

\Delta t=(t'+t_f')-(t+t_f)

\Delta t=(\frac{20}{g'}+\sqrt{\frac{400}{g'^2}+\frac{100}{g'}  }  )-(\frac{20}{g}+\sqrt{\frac{400}{g^2}+\frac{100}{g}  }  )

3 0
3 years ago
Other questions:
  • Match the term to the RIGHT definition
    5·2 answers
  • Standing on the roof of a (42.0+A) m tall building, you throw a ball straight up with an initial speed of (14.5+B) m/s. If the b
    13·1 answer
  • Muscles convert chemical energy into A) light energy. B) nuclear energy. C) mechanical energy. D) electromagnetic energy.
    15·2 answers
  • Which item is an example of a lever?
    11·2 answers
  • What is a major contributor of greenhouse gases in the atmosphere?
    9·1 answer
  • Dans un tube en U contenant du mercure ,on verse de l'autre côté de l'acide sulfurique de densité 1,84 et de l'autre côté de l'a
    6·1 answer
  • When we dissolve a substance in water, a -------- is formed
    6·2 answers
  • I need help please ASAP
    9·2 answers
  • Please can someone solve this question ​
    7·1 answer
  • For an object on a flat surface, the force of gravity is 15 newtons downward and the normal force is 15 newtons upward. The appl
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!