Answer: kinetic energy
Explanation: Kinetic energy has motion which is a moving object
The height of the table above the ground is 0.45 m.
<h3>Data obtained from the question</h3>
From the question given above, the following data were obtained:
- Horizontal velocity (u) = 3 m/s
- Time (t) = 0.3 s
- Acceleration due to gravity (g) = 10 m/s²
- Height (h) =?
<h3>How to determine the height </h3>
The height of the table can be obtained by using the following formula:
h = ½gt²
h = ½ × 10 × 0.3²
h = 5 × 0.09
h = 0.45 m
Thus, the height of the table is 0.45 m
Learn more about motion under gravity:
brainly.com/question/26275209
Answer:
no deflection and net force is zero. Moving in same direction and with same speed
Explanation:
Charge = negative
the angle between the velocity vector and the magnetic field vector is 0°, so the force is given by
F = q v B Sin 0
F = 0
As the force is zero so the charge particle moves with the same velocity and in the same direction.
there is no deflection in the path of negatively charged particle.
Well this is question is easy. I mean i’m the one to say the least, The answer is.. SIKE L bozo imagine not knowing the answer
Answer: 363 Ω.
Explanation:
In a series AC circuit excited by a sinusoidal voltage source, the magnitude of the impedance is found to be as follows:
Z = √((R^2 )+〖(XL-XC)〗^2) (1)
In order to find the values for the inductive and capacitive reactances, as they depend on the frequency, we need first to find the voltage source frequency.
We are told that it has been set to 5.6 times the resonance frequency.
At resonance, the inductive and capacitive reactances are equal each other in magnitude, so from this relationship, we can find out the resonance frequency fo as follows:
fo = 1/2π√LC = 286 Hz
So, we find f to be as follows:
f = 1,600 Hz
Replacing in the value of XL and Xc in (1), we can find the magnitude of the impedance Z at this frequency, as follows:
Z = 363 Ω