<span>speed = wavelength x frequency
speed = 0.4m X 10 Hz
speed = 4 m/s</span>
Explanation:
The inertia of a 4 kg mass is four times as great as a 1 kg mass.
The wave property which is independent of all other properties is THE VELOCITY OF A WAVE.
The velocity of a wave is defined as the distance moved by a cyclic motion per unit time. The velocity of a wave is determined by the properties of the medium through which it moves; it does not not depend on the properties of the wave itself.
Once again, you'd need to know that there are 60 seconds in a minute, and 60 minutes in an hour :)
I'd say converting the minimum wage into cents rather than dollars would make this problem a lot easier. $8.25 = 825 ¢.
So if this person is earning 825 ¢ in an hour, we should divide 825 by 60 to find out how much they're making in a minute:
825 ÷ 60 = 13.75 ¢
Now, we just need to divide by 60 again to work out how much that is in seconds:
13.75 ÷ 60 = 0.229 ¢
So to answer your question, this person would make 0.229 ¢ a second (¢/s) on the job with minimum wage. Converting this value to dollars wouldn't be viable (as it'd just be $0.00, so it's best to leave the answer in cents!)
Answer:
ω = 0.36 rev/s = 2.24 rad/s
Explanation:
First, we will find the time taken by the diver to reach the water. For this we use 2nd equation of motion:
h = Vi t + (1/2)gt²
where,
h = height = 9.6 m
Vi = initial vertical velocity = 0 m/s
t = time taken = ?
g = 9.8 m/s²
Therefore,
9.6 m = (0 m/s)(t) + (1/2)(9.8 m/s²)t²
t = √1.95 s²
t = 1.4 s
Now, the average angular speed of diver will be:
ω = No. of Revolutions/t
ω = 0.5 rev/1.4 s
<u>ω = 0.36 rev/s = 2.24 rad/s</u>