Answer:
Option e) 320 s
Explanation:
Here, distance = 3.0 km = 3000 m
The velocity of boat when it is going upstream;
Upstream velocity = velocity of boat in still water - velocity of river flow
So, Upstream velocity 
So,Time to go upstream

The velocity of boat when it is going downstream;
Downstream velocity = velocity of boat in still water + velocity of river flow
So, Downstream velocity 
So,Time to go downstream

So, total time (t) = 
Option E is the correct answer.
Answer:
Option B. The distance between the objects in Figure A is shorter than the distance between the objects in Figure B.
Explanation:
The force of attraction between two masses is given by the following equation:
F = GM₁M₂ / r²
Where:
F => is the force of attraction
M₁ and M₂ => are the masses of the two objects
G => is the gravitational constant.
r => is the distance between the two objects
From the above formula,
The force of attraction (F) is directly proportional to the product of the two masses and inversely proportional to the square of their apart.
This implies that:
1. An increase in the masses of the object will bring about an increase in the force of attraction and a decrease in the masses will leads to a decrease in the force of attraction.
2. An increase in the distance between the two masses will leads to a decrease in the force of attraction and a decrease in the distance between the two masses will lead to an increase in the force of attraction.
Considering the options given in the question above, option B gives the correct answer to the question.
Answer:
212 pounds
Explanation:
477 nm / 180 nm/hr * 80 #/hr = 212 #
Answer:
I only really know the "How do we use these EM waves in our lives?" part srry
Explanation:
EM waves are used to make sure you cellphone, radio, TV, and etc. have service/ connection.
The outward push of the core created by nuclear fusion and the inward pull of gravity from the core