AM radio stations I believe
W = _|....F*dx*cos(a)........With F=force, x=distance over which force acts on object,
.......0.............................and a=angle between force and direction of travel.
Since the force is constant in this case we don't need the equation to be an integral expression, and since the force in question - the force of friction - is always precisely opposite the direction of travel (which makes (a) equal to 180 deg, and cos(a) equal to -1) the equation can be rewritted like so:
W = F*x*(-1) ............ or ............. W = -F*x
The force of friction is given by the equation: Ffriction = Fnormal*(coeff of friction)
Also, note that the total work is the sum of all 45 passes by the sandpaper. So our final equation, when Ffriction is substituted, is:
W = (-45)(Fnormal)(coeff of friction)(distance)
W = (-45)...(1.8N).........(0.92).........(0.15m)
W = ................-11.178 Joules
Given parameters:
Mass of object = 6.7kg
Velocity = 8m/s
Unknown parameter:
Kinetic energy = ?
Energy is defined as the ability to do work. There are two forms of energy;
Kinetic and potential energy.
Kinetic energy is the energy due to the motion of a body. Whereas, potential energy is the energy due to the position of a body usually at rest.
Kinetic energy is mathematically expressed as;
Kinetic energy = 
where m is the mass of the body
v is the velocity of the body
Since we have been given both mass and velocity, input the parameter to solve for the unknown;
Kinetic energy =
x 6.7 x 8² = 214.4J
So the kinetic energy of the body is 214.4J
<u>Answer:</u>
Work input = Work output * Work against friction is your answer so C
<u>Explanation:</u>
I hope this helps you :)