Answer:

Explanation:
Given data
Mass m=1.2 g=0.0012 kg
diameter d=0.76 m
Friction Force F=3.6 N
To find
Velocity v
Solution
From the Centripetal force we know that

Where m is mass
v is velocity
r is radius
Substitute the given values to find velocity v
So

Answer:
1.6 m
Explanation:
Given that the launch velocity of a toy car launcher is determined to be 5 m/s. If the car is to be launched from a height of 0.5 m.
The time for landing should be calculated by using the second equation of motion formula
h = Ut + 1/2gt^2
Let U = 0
0.5 = 1/2 × 9.8 × t^2
0.5 = 4.9t^2
t^2 = 0.5 / 4.9
t^2 = 0.102
t = 0.32 s
The target should be placed so that the toy car lands on it at:
Distance = 5 × 0.32
distance = 1.597 m
Distance = 1.6 m
Therefore, the target should be placed so that the toy car lands on it 1.6 metres away.
Answer:
C) experience a small induced magnetic moment when placed in an external magnetic field.
Explanation:
Diamagnetics materials are those that experience a small induced magnetic moment when placed in an external magnetic field. These materials, such as bismuth, copper, silver and lead, have elementary magnets in their compositions. When they are exposed to an external magnetic cap, these elemental magnets tend to follow an orientation contrary to the external magnetic field. As a result, a magnetic field is created in the opposite direction to the external magnetic field.
Answer:

Explanation:
As is showed at the figure annexed, we can solve this problem finding the relation between the girl displacement and the shadow displacement.
Relation the triangles (see figure annexed):

We derive in order to find the speed of the shadow, because:
dx/dt: shadow's speed
dy/dt: girl's speed
