Answer:
idk its hard to me too
Step-by-step explanation:
Answer:
This sum is the sum of an arithmetic sequence. There is a formula for the sum of an arithmetic sequence which can be looked up or derived by a variety of means.
A nice approach for this sequence is the following. Notice that the sum of first and last number in the sequence is the same as the sum of the second and second last, and also the same as the sum of the third and third last, and so on.
There are n of these pairs. So the desired sum is n x (first number + last number). But the first number is 1 and the last on is 2n. Thus the desired sum is n(1 + 2n).
Hope this helps!!
Mark Brainleast!!!!!!!!!!!
Answer:

Step-by-step explanation:
Use the cosine ratio,
. Insert the values:

Isolate x. Multiply both sides by x:

Divide both sides by cos 25:

Insert into a calculator:

Round to the nearest hundredth:

Done.
Answer:
The third option listed: ![\sqrt[3]{2x} -6\sqrt[3]{x}\\](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D%5C%5C)
Step-by-step explanation:
We start by writing all the numerical factors inside the qubic roots in factor form (and if possible with exponent 3 so as to easily identify what can be extracted from the root):
![7\sqrt[3]{2x} -3\sqrt[3]{16x} -3\sqrt[3]{8x} =\\=7\sqrt[3]{2x} -3\sqrt[3]{2^32x} -3\sqrt[3]{2^3x} =\\=7\sqrt[3]{2x} -3*2\sqrt[3]{2x} -3*2\sqrt[3]{x}=\\=7\sqrt[3]{2x} -6\sqrt[3]{2x} -6\sqrt[3]{x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D%20%20-3%5Csqrt%5B3%5D%7B16x%7D%20-3%5Csqrt%5B3%5D%7B8x%7D%20%3D%5C%5C%3D7%5Csqrt%5B3%5D%7B2x%7D%20%20-3%5Csqrt%5B3%5D%7B2%5E32x%7D%20-3%5Csqrt%5B3%5D%7B2%5E3x%7D%20%3D%5C%5C%3D7%5Csqrt%5B3%5D%7B2x%7D%20%20-3%2A2%5Csqrt%5B3%5D%7B2x%7D%20-3%2A2%5Csqrt%5B3%5D%7Bx%7D%3D%5C%5C%3D7%5Csqrt%5B3%5D%7B2x%7D%20%20-6%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D)
And now we combine all like terms (notice that the only two terms we can combine are the first two, which contain the exact same radical form:
![7\sqrt[3]{2x} -6\sqrt[3]{2x} -6\sqrt[3]{x}=\\=\sqrt[3]{2x} -6\sqrt[3]{x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D%20%20-6%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D%3D%5C%5C%3D%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D)
Therefore this is the simplified radical expression: ![\sqrt[3]{2x} -6\sqrt[3]{x}\\](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D%5C%5C)
The answer is 17/22 17/20 because of the fractions