Answer:
True The grid with more slits gives more angle separation increases
True. The grating with 10 slits produces better-defined (narrower) peaks
Explanation:
Such a system can be seen as a diffraction network in this case with different number of lines per unit length, the expression for the constructive interference of a diffraction network is
d sin θ = m λ
where d is the distance between slits or lines, m the order of diffraction and λ the wavelength.
For network with 5 slits
d = 1/5 = 0.2
For the network with 10 slits
d = 1/10 = 0.1
let's calculate the separation (teat) for each one
θ = sin⁻¹ (m λ / d)
for 5 slits
θ₅ = sin⁻¹ (m λ 5)
for 10 slits
θ₁₀ = sin⁻¹ (m λ 10)
we can appreciate that for more slits the angle increases
the intensity of a series of slits is
I = I₀ sin²2 (N d/2) / sin² d/2)
when there are more slits (N) the peaks have greater intensity and are more acute (half width decreases)
let's analyze the claims
False
True The grid with more slits gives more angle separation increases
False
True The expression for the intensity of the diffraction peaks the intensity of the peaks increases with the number of slits as well as their spectral width decreases
False
Answer:
Electrons are not little balls that can fall into the nucleus under electrostatic attraction
Explanation:
An LDR's resistance changes with light intensity, while a thermistor's resistancce changes with temperature.
In dark, LDR's resistance is large and in the day/light LDR's resistance is small.
At low temperature, thermistor's resistance is large, while at large temperature it resistance is small.
In an LDR Resistance increases as light intensity falls, while in a thermistor resistance falls as temperature falls.
Elements are composed of single atoms and compounds are composed of different elements.
<u>Explanation:</u>
A single atom generally forms an element. It is an individual particle or atom present in the periodic table, mostly it refers with symbol. When two or more elements of different types or same types combine together, it is called as compound.
The compounds can be heterogeneous compounds and homogeneous compounds. Depending upon the combination of elements, this classification is done for compounds. The elements can form a compound by ionic, covalent, metallic or hydrogen bonding. The molecules can also be termed as compounds.