Answer:
a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.
b) λ = c / f
Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted,
c) threshold energy
h f =Ф
Explanation:
It's photoelectric effect was fully explained by Einstein by the expression
Knox = h f - fi
Where K is the kinetic energy of the photoelectrons, f the frequency of the incident radiation and fi the work function of the metal
a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.
b) wavelength is related to frequency
λ = c / f
Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted, so there is a wavelength from which electrons cannot be removed from the metal.
c) As the work increases, more frequency radiation is needed to remove the electrons, because there is a threshold energy
h f =Ф
Answer:
i don't understand the hw
The right hand rule to find the direction of the magnetic field for a falling bar is:
- The charge is positive the magnetic field is outgoing, horizontally and towards us.
- The charge of the bar is negative, the magnetic field is incoming, that is horizontal away from us.
The magnetic force is given by the vector product of the velocity and the magnetic field.
F = q v x B
Where the bolds indicate vectors, F is the force, q the charge on the particle, v the velocity and B the magnetic field.
In the vector product, the vectors are perpendicular, which is why the right-hand rule has been established, see attached:
- The thumb points in the direction of speed.
- Fingers extended in the direction of the magnetic field.
- The palm is in the direction of the force if the charge is positive and in the opposite direction if the charge is negative.
They indicate that the bar is dropped, therefore its speed is vertical and downwards, it moves to the left therefore this is the direction of the force, we use the right hand rule, the magnetic field must be horizontal, we have two possibilities:
- If the charge is positive the magnetic field is outgoing, horizontally and towards us.
- If the charge of the bar is negative, the magnetic field is incoming, that is, horizontal away from us
In conclusion using the right hand rule we can find the direction of the magnetic field for a falling bar is:
- The charge of the bar is negative, the magnetic field is incoming, that is horizontal away from us.
- The charge is positive the magnetic field is outgoing, horizontally and towards us.
Learn more about the right hand rule here: brainly.com/question/12847190
Water? The sun. I DUNNO I FEEL BAD :(
A. people from the same location share the same personality type.