Answer:
C_{y} = 4.96 and θ' = 104,5º
Explanation:
To add several vectors we can decompose each one of them, perform the sum on each axis, to find the components of the resultant and then find the module and direction.
Let's start by decomposing the two vectors.
Vector A
sin θ =
/ A
cos θ = Aₓ / A
A_{y} = A sin θ
Ax = A cos θ
A_{y} = 4.9 sin 31 = 2.52
Ax = 4.9 cos 31 = 4.20
Vector B
B_{y} = B sin θ
Bx = B cos θ
B_{y} = 6 sin 156 = 2.44
Bx = 6 cos 156 = -5.48
The components of the resulting vector are
X axis
Cx = Ax + B x
Cx = 4.20 -5.48
Cx = -1.28
Axis y
C_{y} = Ay + By
C_{y} = 2.52 + 2.44
C_{y} = 4.96
Let's use the Pythagorean theorem to find modulo
C = √ (Cₙ²x2 + Cy2)
C = Ra (1.28 2 + 4.96 2)
C = 5.12
We use trigonemetry to find the angle
tan θ = C_{y} / Cₓ
θ’ = tan⁻¹ (4.96 / (1.28))
θ’ = 75.5
como el valor de Cy es positivo y Cx es negativo el angulo este en el segundo cuadrante, por lo cual el angulo medido respecto de eje x positivo es
θ’ = 180 – tes
θ‘= 180 – 75,5
θ' = 104,5º
Answer:
Explanation:
Let the intensity of the noise be represented by I
Given that
40dB = 10 log 10 ( I /I•) ........ 1
I• is the lowest or threshold intensity of sound made.
I represents the intensity of the sound/ noise
The intensity of noise of 1000flies will be
β = 10 log 10 (1000I/I•)
Open up the bracket
β = 10 log 10(1000)+ 10 log 10(I/I•)
10 log 10(10^3)+10 log 10(I/I•)
3×10(10 log 10) +10 log 10(I/I•)
Recall, 10 log 10 = 1
30×1 + 10 log 10(I/I•).........2
Put equation 1 into 2
β =30+40
= 70db
Answer:
3. Large butterfly in flight, flying through the air?
Explanation:
Momentum is simply defined as the quantity of motion a body possess. It is mathematically given as;
Momentum = mass x velocity
The larger the mass, the larger the momentum and also the velocity
Since the large butterfly is in flight, it has the largest velocity.
A sleeping bear and resting caterpillar have no momentum because their velocity is 0
It’s my guess but from my opinion i would say yes