The complete question in the attached figure
we know that
volume of <span>the railing=volume of a rectangular prism+volume </span><span>a half cylinder
convert 27 ft to inches--------> 27*12-----> 324 in
step 1
find the </span>volume of a rectangular prism
volume of a rectangular prism=L*W*H-----> 324*2.5*1.25-----> 1012.5 in³
step 2
find volume a half cylinder
volume a half cylinder=(1/2)*pi*r²*h
r=1.25 in
h= 324 in
volume a half cylinder=(1/2)*pi*1.25²*324---> 795.22 in³
step 3
volume of the railing=volume of a rectangular prism+volume a half cylinder
volume of the railing=1012.5+795.22------>1807.72 in³------> 1808 in³
the answer is1808 in³
Answer:
x is 55 degrees because the whole angle is a total of 180 degrees. All you have to do is do 180 minus the given angle, 125
Answer:


Step-by-step explanation:
Given


Required
Determine the volume of the solid generated
Using the disk method approach, we have:

Where


So:

Where
So:
Apply the following half angle trigonometry identity;
![\cos^2(x) = \frac{1}{2}[1 + \cos(2x)]](https://tex.z-dn.net/?f=%5Ccos%5E2%28x%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5B1%20%2B%20%5Ccos%282x%29%5D)
So, we have:
![\cos^2(2x) = \frac{1}{2}[1 + \cos(2*2x)]](https://tex.z-dn.net/?f=%5Ccos%5E2%282x%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5B1%20%2B%20%5Ccos%282%2A2x%29%5D)
Open bracket

So, we have:
![V = \pi \int\limits^{\frac{\pi}{4}}_0 {[\frac{1}{2} + \frac{1}{2}\cos(4x)]} \, dx](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20%5Cint%5Climits%5E%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D_0%20%7B%5B%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Ccos%284x%29%5D%7D%20%5C%2C%20dx)
Integrate
![V = \pi [\frac{x}{2} + \frac{1}{8}\sin(4x)]\limits^{\frac{\pi}{4}}_0](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20%5B%5Cfrac%7Bx%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B8%7D%5Csin%284x%29%5D%5Climits%5E%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D_0)
Expand
![V = \pi ([\frac{\frac{\pi}{4}}{2} + \frac{1}{8}\sin(4*\frac{\pi}{4})] - [\frac{0}{2} + \frac{1}{8}\sin(4*0)])](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20%28%5B%5Cfrac%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B8%7D%5Csin%284%2A%5Cfrac%7B%5Cpi%7D%7B4%7D%29%5D%20-%20%5B%5Cfrac%7B0%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B8%7D%5Csin%284%2A0%29%5D%29)
So:
or

What times itself equils that number