I + 6 = r
4r = s
i + r + s = 126
4i + 24 = 4r
s= 4r
i = r-6
4i+24=i+6
-3i=18
i = 6
Solve the rest
Answer:
140 toy cars
Step-by-step explanation:
The ratio of Ed's toy car to Pete's toy car is initially given as 5:2
Ed gave Pete a total number of 30 cars
Let x represent the greatest common factor that exists between both number
Number of Ed's car is represented as 5x
Number of Pete car is represented as 2x
Since they each have an equal number of cars which is 30 then we can solve for x as follows
5x-30=2x+30
Collect the like terms
5x-2x= 30+30
3x= 60
Divide both sides by the coefficient of x which is 3
3x/3=60/3
x=20
Ed's car is 5x, we substitute 20 for x
5(20)
= 100 cars
Pete car is 2x,we substitute 20 for x
2(20)
= 40 cars
Therefore, the total number of cars can be calculated as follows
= 100+40
= 140 toy cars
Hence they have 140 toy cars altogether
Look online and find the answers to the workbook that's what I did and I never failed workbook things
So you take 2 hours and multiply it by 5 cause you get $5 per hour. Then multiply 6.25 by 5. Add those together to get your answer!! So 5x2= 10. 6.25x5= 31.25. THE ANSWER SHOULD BE 41.25!
Answer:
E
Step-by-step explanation:
Solution:-
- We are to investigate the confidence interval of 95% for the population mean of walking times from Fretwell Building to the college of education building.
- The survey team took a sample of size n = 24 students and obtained the following results:
Sample mean ( x^ ) = 12.3 mins
Sample standard deviation ( s ) = 3.2 mins
- The sample taken was random and independent. We can assume normality of the sample.
- First we compute the critical value for the statistics.
- The z-distribution is a function of two inputs as follows:
- Significance Level ( α / 2 ) = ( 1 - CI ) / 2 = 0.05/2 = 0.025
Compute: z-critical = z_0.025 = +/- 1.96
- The confidence interval for the population mean ( u ) of walking times is given below:
[ x^ - z-critical*s / √n , x^ + z-critical*s / √n ]
Answer: [ 12.3 - 1.96*3.2 / √24 , 12.3 + 1.96*3.2 / √24 ]