Answer:
Explanation:
We have in this question the equilibrium
X ( g ) + Y ( g ) ⇆ Z ( g )
With the equilibrium contant Kp = pZ/(pX x pY)
The moment we change the concentration of Y, we are changing effectively the partial pressure of Y since pressure and concentration are directly proportional
pV = nRT ⇒ p = nRT/V and n/V is molarity.
Therefore we can calculate the reaction quotient Q
Qp = pZ/(pX x pY) = 1/ 1 x 0.5 atm = 2
Since Qp is greater than Kp the system proceeds from right to left.
We could also arrive to the same conclusion by applying LeChatelier´s principle which states that any disturbance in the equilibrium, the system will react in such a way to counteract the change to restore the equilibrium. Therefore, by having reduced the pressure of Y the system will react favoring the reactants side increasing some of the y pressure until restoring the equilibrium Kp = 1.
Answer:
0.39 mol
Explanation:
Considering the ideal gas equation as:
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
At same volume, for two situations, the above equation can be written as:-
Given ,
n₁ = 1.50 mol
n₂ = ?
P₁ = 3.75 atm
P₂ = 0.998 atm
T₁ = 21.7 ºC
T₂ = 28.1 ºC
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (21.7 + 273.15) K = 294.85 K
T₂ = (28.1 + 273.15) K = 301.25 K
Using above equation as:

Solving for n₂ , we get:
n₂ = 0.39 mol
The turbine would stop generating electricity
The question is basically asking what is happening to the energy (that is in the form of heat) when it is being absorbed by an object. The energy being absorbed from the heat source is being turned into kinetic energy. This can be explained by temperature change. As you add more heat to an object, the temperature rises. Since temperature is the average kinetic energy of all of the molecules in an object, we can say that as temperature rises so does the kinetic energy of the molecules in the object. Due to the fact that heat is causing the temperature to increase, we can say that the energy from the heat is being turned into kinetic energy.
I hope this helps. Let me know in the comments if anything is unclear.
I believe the third choice is correct.
This can be proven by the fact that to find the molar mass of a compound, you simply add the molar masses of all the atoms within the compound
Hope this helps