Answer: Mass of silver deposited at the cathode is 37.1g
Explanation: According to Faraday Law of Electrolysis, the mass of substance deposited at the electrode (cathode or anode) is directly proportional to quantity of electricity passed through the electrolyte
Faraday has found that to liberate one gm eq. of substance from an electrolyte, 96500C of electricity is required.
+e− ==> Ag(s)
Given that
Current (I) = 8.5A
Time (t) = 65 *60 = 3900s
Quantity of electricity passed = 8.5*3900 =33150C
Molar mass of Ag= 108g
96500C will liberate 108g
33150C will liberate Xg
Xg= (108*33150)/96500
=37.1g
Therefore the mass of Ag deposited at the cathode is 37.1g.
Answer:
49.2 g/mol
Explanation:
Let's first take account of what we have and convert them into the correct units.
Volume= 236 mL x (
) = .236 L
Pressure= 740 mm Hg x (
)= 0.97 atm
Temperature= 22C + 273= 295 K
mass= 0.443 g
Molar mass is in grams per mole, or MM=
or MM=
. They're all the same.
We have mass (0.443 g) we just need moles. We can find moles with the ideal gas constant PV=nRT. We want to solve for n, so we'll rearrange it to be
n=
, where R (constant)= 0.082 L atm mol-1 K-1
Let's plug in what we know.
n=
n= 0.009 mol
Let's look back at MM=
and plug in what we know.
MM= 
MM= 49.2 g/mol
Answer:

Explanation:
Hello there!
In this case, according to the given chemical reaction, it is possible for us to calculate the produced grams of nitrogen monoxide by starting with 25.0 g of nitrogen via their 1:2 mole ratio and the molar masses of 30.1 g/mol and 28.02 g/mol, respectively and by some stoichiometry:

Best regards!
I think its a covalent bond because carbon is positively charged and iron is positively charged too which makes the bond covalent. hope it helps
Answer:
2H₂ + O₂ → H₂O
Explanation:
The unbalanced equation is
2H₂ + O₂ → H₂O
In a balanced chemical equation, the number of moles of species on both sides of the expression must be the same.
2H₂ + O₂ → H₂O
Reactant Product
H O H O
Number of moles 4 2 2 1
We see that the number of hydrogen and oxygen on both sides of the expression differs significantly.