Answer:
Specific gravity of mercury is 13.56 and it is an unit-less quantity.
Explanation:
Mass of the mercury = m = 607.0 lb = 275330.344 g
1 lb = 453.592 g
Volume of the mercury = v = 

Density of the mercury = d=
d = 13.56 g/mL
Specific gravity of substance = Density of substance ÷ Density of water

Specific gravity of mercury :
(unit-less quantity)
Answer:
specific heat.
Explanation:
Definition:
The amount of heat required to raise the temperature of one gram of substance by one degree is called specific heat.
Formula:
Q = m. c. ΔT
Q = amount of heat required
m = mass of substance
c = specific heat of substance
ΔT = change in temperature
The substance with greater value of specific heat require more heat to raise the temperature while the substance with lower value will raise its temperature very quickly by absorbing smaller heat.
For example the beach sand gets hot very quickly because of lower specific heat of sand while water is colder than sand because of higher specific heat capacity.
If the bonds are held together tightly, as an ionic bond or even a covalent bond, there will need to be a strong force to separate those bonds. This would by why their would be a high melting point. Another reason would be re-activity. <span />
Answer:
V = 48.5 L
Explanation:
Converting °C to K and kPa to atm
T = 25.0°C + 273.15 = 298.15 K
P = 61.3 kPa × (1 atm / 101.325 kPa) = 0.60498 atm
Calculating the volume of gas
V = nRT / P
V = (1.20 mol)(0.082057 L•atm/mol•K)(298.15 K) / 0.60498 atm
V = 48.5 L
Q or the Reaction Quotient is the interaction between the reactants and products in a given chemical reaction. The value of Q should be compared to the value of K (which is the value of the reaction at equilibrium) in order to determine which way the reaction should move to achieve equilibrium.If Q is already equal to K, then this indicates that the reaction is in equilibrium. If Q>K, then the reactants are converted to products; If Q<K, then the products are converted to reactants. Either way, the reaction proceeds to move towards equilibrium after some time.