solution:
Z1 = 5(cos25˚+isin25˚)
Z2 = 2(cos80˚+isin80˚)
Z1.Z2 = 5(cos25˚+isin25˚). 2(cos80˚+isin80˚)
Z1.Z2 = 10{(cos25˚cos80˚ + isin25˚cos80˚+i^2sin25˚sin80˚) }
Z1.Z2 =10{(cos25˚cos80˚- sin25˚sin80˚+ i(cos25˚sin80˚+sin25˚cos80˚))}
(i^2 = -1)
Cos(A+B) = cosAcosB – sinAsinB
Sin(A+B) = sinAcosB + cosAsinB
Z1.Z2 = 10(cos(25˚+80˚) +isin(25˚+80˚)
Z1.Z2 = 10(cos105˚+ isin105˚)
The answer is 16 because 16•5=80 and then 80-9=71 yk?
Final result : -3
Step by step solution :Step 1 : 3 - a Simplify ————— 21 Equation at the end of step 1 : (a - 3) (3 - a) ——————— ÷ ——————— 7 21 Step 2 : a - 3 Simplify ————— 7 Equation at the end of step 2 : (a - 3) (3 - a) ——————— ÷ ——————— 7 21 Step 3 : a-3 3-a Divide ——— by ——— 7 21
3.1 Dividing fractions
To divide fractions, write the divison as multiplication by the reciprocal of the divisor :
a - 3 3 - a a - 3 21 ————— ÷ ————— = ————— • ——————— 7 21 7 (3 - a)
3.2 Rewrite (3-a) as (-1) • (a-3) Canceling Out : 3.3 Cancel out (a-3) which now appears on both sides of the fraction line.
Final result : -3
Answer:
I dont see where you said its shown below..repost please =)