Answer:
a. 78 degree
Explanation:
According to Snell's Law, we have:
(ni)(Sin θi) = (nr)(Sin θr)
where,
ni = Refractive index of medium on which light is incident
ni = Refractive index of ethyl alcohol = 1.361
nr = Refractive index of medium from which light is refracted
nr = Refractive index of ethyl alcohol = 1.333
θi = Angle of Incidence
θr = Angle of refraction
So, the Angle of Incidence is know as the Critical Angle (θc), when the refracted angle becomes 90°. This is the case of total internal reflection. That is:
θi = θc
when, θr = 90°
Therefore, Snell's Law becomes:
(1.361)(Sin θc) = (1.333)(Sin 90°)
Sin θc = 1.333/1.361
θc = Sin⁻¹ (0.9794)
θc = 78.35° = 78° (Approximately)
Therefore, correct answer will be:
a. <u>78 degree</u>
Answer:
B. South
Explanation:
An electric field can be defined as the amount of electric force per unit charge. The direction of the electric field can be determined by the motion of a positive test charge under the electric force.
The direction of electric field is radially outward for a positive charge and radially inward for a negative charge. Thus, for the electric field points toward SOUTH at a position directly south of a positive charge.
Answer:
The velocity is 
Explanation:
Given:
Force = 500N
Distance s= 0
To find :
Its velocity at s = 0.5 m
Solution:






Using the relation,



Now integrating on both sides


![\left[\frac{v^{2}}{2}\right]_{0}^{2}=\left[\left(30.77 s-19.23 s^{2}\right)\right]_{0}^{0.5}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cfrac%7Bv%5E%7B2%7D%7D%7B2%7D%5Cright%5D_%7B0%7D%5E%7B2%7D%3D%5Cleft%5B%5Cleft%2830.77%20s-19.23%20s%5E%7B2%7D%5Cright%29%5Cright%5D_%7B0%7D%5E%7B0.5%7D)
![\left[\frac{v^{2}}{2}\right]=\left[\left(30.77(0.5)-19.23(0.5)^{2}\right)\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cfrac%7Bv%5E%7B2%7D%7D%7B2%7D%5Cright%5D%3D%5Cleft%5B%5Cleft%2830.77%280.5%29-19.23%280.5%29%5E%7B2%7D%5Cright%29%5Cright%5D)
![\left[\frac{v^{2}}{2}\right]=[15.385-4.807]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cfrac%7Bv%5E%7B2%7D%7D%7B2%7D%5Cright%5D%3D%5B15.385-4.807%5D)
![\left[\frac{v^{2}}{2}\right]=10.578](https://tex.z-dn.net/?f=%5Cleft%5B%5Cfrac%7Bv%5E%7B2%7D%7D%7B2%7D%5Cright%5D%3D10.578)




"The number of waves per second will increase" is the statement among the choices given in the question that <span>will be true if you increase the frequency of a periodic wave. The correct option among all the options that are given in the question is the first option or option "A". I hope that the answer has helped you.</span>
Your first step is to find the circumference of the earth, with the numbers given. You can do that by putting the radius of 6200 kilometres into the 2πr equation. That should get you a circumference of 12400π, or about 38,955.75 kilometres.
Next, you can use the rate the Jetson's car is going (180km/h) and divide the 38,955.75 by it to see how many hours it would take at that constant speed.
38,955.75 / 180 = 216.42 hours
Then you can divide that by 24 to get how many days