Answer:
The order of magnitude of speed of light in S.i. units is 8. Therefore c=3×10^8 meter / second.
Explanation:
Explanation:
Given that,
Each vertical line on the graph is 1 millisecond (0.001 s) of time.
We need to find the period and the frequency of the sound wave. The period of a wave is equal to the each vertical line on graph i.e. 0.001 s.
Let f be the frequency of the sound wave. So,
f = 1/T
i.e.

So, the period and the frequency of the sound waves is 1 milliseond and 1000 Hz respectively.
Hi there!
We can use the conservation of angular momentum to solve.

I = moment of inertia (kgm²)
ω = angular velocity (rad/sec)
Recall the following equations for the moment of inertia.

Begin by converting rev/sec to rad sec:

According to the above and the given information, we can write an equation and solve for ωf.

Answer:
When liquid water is cooled, it contracts like one would expect until a temperature of approximately 4 degrees Celsius is reached. After that, it expands slightly until it reaches the freezing point, and then when it freezes it expands by approximately 9%.
The wavelength, which represents the size of the smallest detectable detail that uses ultraviolet light , is calculated as follows: 3×
/ 1.72×
or approximately 1.74×
m.
The distance between the two positive, two negative, or two minimal points on the waveform is known as the wavelength of the wave. The following formula expresses the relationship between the frequency and wavelength of light:
f = c / λ
where, f = frequency of light
c = speed of light
λ = wavelength of light
Given data = f = 1.72×
Hz
Therefore, λ = 3×
/ 1.72×
λ = 1.74×
m
The wavelength, which represents the size of the smallest detectable detail that uses ultraviolet light , is calculated as follows: 3×
/ 1.72×
or approximately 1.74×
m.
Learn more about light here;
brainly.com/question/15200315
#SPJ4