A eukaryotic cell goes through nuclear division creating two identical daughter cells.
Answer:
The correct answer is 532 K
Explanation:
The Gay-Lussac law describes the behavior of a gas at constant volume, by changing the pressure or temperature. When is heated, the change in pressure of the gas is directly proportional to it absolute temperature (in Kelvin or K).
We have the following initial conditions:
P1= 71.8 kPa
T1= -104ºC +273 = 169 K
If the pressure increases until reaching 225.9 kPa (P2), we can calculate the final temperature of the gas (T2) by using the Gay-Lussac derived expression:
P1 x T2 = P2 x T1
⇒T2= (P2 x T1)/P1 = (225.9 kPa x 169 K)/71.8 kPa= 531.7 K ≅ 532 K
Answer:
This question appears incomplete
Explanation:
This question appears incomplete because of the absence of options. However, hydrogen is placed in group 1 because it has just one electron in it's outermost shell (which happens to be the only shell it has) just like every other group 1A/group 1 element. While helium is placed in group 8A/group 18 because it has a completely filled outermost shell (which is also the only shell it has) just like every other element in group 8A/group 18.
Answer:
The oxidizing agent is the MnO₄⁻
Explanation:
This is the redox reaction:
10 I⁻ (aq) + 2 MnO₄⁻ (aq) + 16 H⁺ (aq) → 5 I₂ (s) + 2 Mn²⁺ (aq) + 8 H2O (l)
Let's determine the oxidation and the reduction.
I⁻ acts with -1 in oxidation state and changes to 0, at I₂.
All elements in ground state has 0 as oxidation state.
As the oxidation state has increased, this is the oxidation, so the iodide is the reducing agent.
In the permanganate (MnO₄⁻), Mn acts with +7 in oxidation state and decreased to Mn²⁺. As the oxidation state is lower, we talk about the reduction. Therefore, the permanganate is the oxidizing agent because it oxidizes iodide to iodine
Explanation:
23 are the number of atoms