The balanced equation for the above reaction is as follows
C₆H₁₂O₆(s) + 6O₂(g) --> 6H₂O(g) + 6CO₂<span>(g)
the limiting reactant in the equation is glucose as the whole amount of glucose is used up in the reaction.
the amount of </span>C₆H₁₂O₆ used up - 13.2 g
the number of moles reacted - 13.2 g/ 180 g/mol = 0.073 mol
stoichiometry of glucose to CO₂ - 1:6
then number of CO₂ moles are - 0.073 mol x 6 = 0.44 mol
As mentioned this reaction takes place at standard temperature and pressure conditions,
At STP 1 mol of any gas occupies 22.4 L
Therefore 0.44 mol of CO₂ occupies 22.4 L/mol x 0.44 mol = 9.8 rounded off - 10.0 L
Answer is B) 10.0 L CO₂
Answer : The standard enthalpy of formation of ethylene is, 52.4 kJ
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The formation reaction of
will be,

The intermediate balanced chemical reaction will be,
(1)

(2)

(3)

Now we will reverse the reaction 1, multiply reaction 2 and 3 by 2 then adding all the equation, we get :
(1)

(2)

(3)

The expression for enthalpy of formation of
will be,



Therefore, the standard enthalpy of formation of ethylene is, 52.4 kJ
1 meter = .001 kilometers so 4.5 x 10^3 = 4500 so .001 x 4500 = 4.5 kilo
Answer:
Explanation:
a) The mass of the reactants is 2.36 grams, and the mass of the products is 1.57 grams plus the mass of the carbonic acid. Thus, using the law of conservation of mass, we get the mass of the carbonic acid is 2.36 - 1.57 = 0.79 grams.
b) The gram-formula mass of sodium bicarbonate is 84.006 g/mol, meaning that 2.36/84.006 = 0.028 moles were consumed. Thus, this means that in theory, 0.014 moles of carbonic acid should have been produced, which would have a mass of (0.014)(62.024)=0.868 grams. Thus, the percentage yield is (0.79)/(0.868) * 100 = 91%
Answer:
D
Explanation:
pressure is inversely proportional to gas volume