Answer:
The <em>correct</em> statements are:
- <em>A. The electric field is nonuniform.</em>
- <em>D. Charge Q is positive.</em>
- <em>E. If charge A moves toward charge Q, it must be a negative charge</em>
Explanation:
The answer choices are:
- A. The electric field is nonuniform.
- B. The electric field is uniform.
- E. If charge A moves toward charge Q, it must be a negative charge.
- F. If charge A moves toward charge Q, it must be a positive charge.
<h2>Solution</h2>
The <em>electric field</em> is the electrostatic force per unit of charge,

around around a charge, where another charge would experience the electrostatic force.
The electric field lines are shown in a diagram with arrows ditributed radially away from a positive charge and radially toward a negative charge.
Since the arrows are away from Q, Q is a positive charge: <em>statement D.</em>
Since the size of the arrows decreases as you move away from Q the stregth of the field is not uniform: <em>statement A.</em>
Since the charge Q is positive, a negative charge would be attracted toward it: <em>statement E.</em>
Answer:
As a mass greater than that of baseball, at the moment of the bowling wave the moment of the baseball ball is also greater
Explanation:
This problem is an application of momentum and momentum. When the astronaut pushed balls, he needed more force to move the ball of greater mass (bowling). The expression for soul is
p = m v
Besibol Blade
p1 = m1 v
Bowling ball
p2 = m2 v
As a mass greater than that of baseball, at the moment of the bowling wave the moment of the baseball ball is also greater
p2 >> p1
Free ions. Negative ions have one extra electron, positive ions are missing an electron. Negative ions give up their extra electron easily. I hope my answer has come to your help. God bless and have a nice day ahead! Feel free to ask more questions.
Answer:
Velocity = 20.3 [m/s]
Explanation:
This is a typical problem of energy conservation, where potential energy is converted to kinetic energy. We must first find the potential energy. In this way, we will choose as a reference point or point where the potential energy is zero when the carrriage rolls down 21 [m] from the top of the hill.
![E_{p} =m*g*h\\ where:\\m = mass = 25[kg]\\g = gravity = 9.81 [m/s^2]\\h = elevation = 21 [m]\\E_{p} =potential energy [J]\\E_{p} =25*9.81*21=5150[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5C%20where%3A%5C%5Cm%20%3D%20mass%20%3D%2025%5Bkg%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%20%5Bm%2Fs%5E2%5D%5C%5Ch%20%3D%20elevation%20%3D%2021%20%5Bm%5D%5C%5CE_%7Bp%7D%20%3Dpotential%20energy%20%5BJ%5D%5C%5CE_%7Bp%7D%20%3D25%2A9.81%2A21%3D5150%5BJ%5D)
Now this will be the same energy transformed into kinetic energy, therefore:
![E_{p}=E_{k} = 5150[J]\\E_{k} =0.5*m*v^{2} \\where:\\v=velocity [m/s]\\v=\sqrt{\frac{E_{k}}{0.5*25} } \\v=20.3[m/s]](https://tex.z-dn.net/?f=E_%7Bp%7D%3DE_%7Bk%7D%20%3D%205150%5BJ%5D%5C%5CE_%7Bk%7D%20%3D0.5%2Am%2Av%5E%7B2%7D%20%5C%5Cwhere%3A%5C%5Cv%3Dvelocity%20%5Bm%2Fs%5D%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7BE_%7Bk%7D%7D%7B0.5%2A25%7D%20%7D%20%5C%5Cv%3D20.3%5Bm%2Fs%5D)