Heat
gained in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)
When two objects are in contact,
it should be that the heat lost is equal to what is gained by the other. From
this, we can calculate things. We do as follows:
<span>Heat gained =
Heat lost</span>
mC(T2-T1) = - mC(T2-T1)
C(liquid water) = 4.18 J/gC
C(ice) = 2.11 J/gC
</span><span>(354 mL)(1.0 g/mL)(4.18 J/gC)(26 C - 6 C) = m(2.11 J/gC)(6 - 0C) </span><span>
m = 2337.63 g of ice
</span>
Explanation:
Bernoulli equation for the flow between bottom of the tank and pipe exit point is as follows.
= 
![\frac{(100 \times 144)}{62.43} + 0 + h[tex] = [tex]\frac{(50 \times 144)}{(62.43)} + \frac{(70)^{2}}{2(32.2)} + 0 + 40 + 60](https://tex.z-dn.net/?f=%5Cfrac%7B%28100%20%5Ctimes%20144%29%7D%7B62.43%7D%20%2B%200%20%2B%20h%5Btex%5D%20%3D%20%5Btex%5D%5Cfrac%7B%2850%20%5Ctimes%20144%29%7D%7B%2862.43%29%7D%20%2B%20%5Cfrac%7B%2870%29%5E%7B2%7D%7D%7B2%2832.2%29%7D%20%2B%200%20%2B%2040%20%2B%2060)
h = 
= 60.76 ft
Hence, formula to calculate theoretical power produced by the turbine is as follows.
P = mgh
= 
= 6076 lb.ft/s
= 11.047 hp
Efficiency of the turbine will be as follows.
=
× 100%
=
= 52.684%
Thus, we can conclude that the efficiency of the turbine is 52.684%.
The distance covered will be:

The correct answer is
D).
The chemical formula for chlorophyll is C55H72O5N4<span>Mg. Only 1 of the 137 atoms comes from magnesium.
</span>
Chlorophyll captures the sun's energy and is used as energy to complete the photosynthesis process