1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolezko [41]
3 years ago
15

1pt Which statement best describes the relationship between the system and the surroundings?

Chemistry
1 answer:
Firlakuza [10]3 years ago
4 0

Answer:

Hi how are you doing today Jasmine

You might be interested in
Rank the following elements by effective nuclear charge, Zeff, for a valence electron. F LI Be B N
Stels [109]

Answer:

Rank in increasing order of effective nuclear charge:

  • Li < Be < B < N < F

Explanation:

This explains the meaning of effective nuclear charge, Zeff, how to determine it, and the calculations for a valence electron of each of the five given elements: F, Li, Be, B, and N.

<u>1) Effective nuclear charge definitions</u>

  • While the total positive charge of the atom nucleus (Z) is equal to the number of protons, the electrons farther away from the nucleus experience an effective nuclear charge (Zeff) less than the total nuclear charge, due to the fact that electrons in between the nucleus and the outer electrons partially cancel the atraction from the nucleus.

  • Such effect on on a valence electron is estimated as the atomic number less the number of electrons closer to the nucleus than the electron whose effective nuclear charge is being determined: Zeff = Z - S.

<u><em>2) Z eff for a F valence electron:</em></u>

  • F's atomic number: Z = 9
  • Total number of electrons: 9 (same numer of protons)
  • Period: 17 (search in the periodic table or do the electron configuration)
  • Number of valence electrons:  7 (equal to the last digit of the period's number)
  • Number of electrons closer to the nucleus than a valence electron: S = 9 - 7 = 2
  • Zeff = Z - S = 9 - 2 = 7

<u><em>3) Z eff for a Li valence eletron:</em></u>

  • Li's atomic number: Z = 3
  • Total number of electrons: 3 (same number of protons)
  • Period: 1 (search on the periodic table or do the electron configuration)
  • Number of valence electrons: 1 (equal to the last digit of the period's number)
  • Number of electrons closer to the nucleus than a valence electron: S = 3 - 1 = 2
  • Z eff = Z - S = 3 - 2 = 1.

<em>4) Z eff for a Be valence eletron:</em>

  • Be's atomic number: Z = 4
  • Total number of electrons: 4 (same number of protons)
  • Period: 2 (search on the periodic table or do the electron configuration)
  • Number of valence electrons: 2 (equal to the last digit of the period's number)
  • Number of electrons closer to the nucleus than a valence electron: S = 4 - 2 = 2
  • Z eff = Z - S = 4 - 2 = 2

<u><em>5) Z eff for a B valence eletron:</em></u>

  • B's atomic number: Z = 5
  • Total number of electrons: 5 (same number of protons)
  • Period: 13 (search on the periodic table or do the electron configuration)
  • Number of valence electrons: 3 (equal to the last digit of the period's number)
  • Number of electrons closer to the nucleus than a valence electron: S = 5 - 3 = 2
  • Z eff = Z - S = 5 - 2 = 3

<u><em>6) Z eff for a N valence eletron:</em></u>

  • N's atomic number: Z = 7
  • Total number of electrons: 7 (same number of protons)
  • Period: 15 (search on the periodic table or do the electron configuration)
  • Number of valence electrons: 5 (equal to the last digit of the period's number)
  • Number of electrons closer to the nucleus than a valence electron: S = 7 - 5 = 2
  • Z eff = Z - S = 7 - 2 = 5

<u><em>7) Summary (order):</em></u>

  Atom          Zeff for a valence electron

  • F                   7
  • Li                   1
  • Be                 2
  • B                   3
  • N                   5

  • <u>Conclusion</u>: the order is Li < Be < B < N < F
6 0
3 years ago
6. 100 ml of gaseous hydrocarbon consumes 300
mario62 [17]

Answer:

  • <u><em>a. C₂H₄</em></u>

Explanation:

At constant pressure and temperature, the mole ratio of the gases is equal to their volume ratio (a consequence of Avogadro's law).

Hence, the <em>complete combustion reaction</em> that has a ratio of 100 ml of gaseous hydrocarbon to 300 ml of oxygen, is that whose mole ratio is 1 mol hydrocarbon : 3 mol of oxygen.

Then, you must write the balanced chemical equations for the complete combustion of the four hydrocarbons in the list of choices, and conclude which has such mole ratio (1 mol hydrocarbon : 3 mol oxygen).

A complete combustion reaction of a hydrocarbon is the reaction with oxygen that produces CO₂ and H₂O, along with the release of heat and light.

<u>a. C₂H₄:</u>

  • C₂H₄ (g) + 3O₂ (g) → 2CO₂(g)  + 2H₂O (g)

Precisely, for this reaction the mole ratio is 1 mol C₂H₄: 2 mol O₂, hence, this is the right choice.

The following analysis just shows that the other options are not right.

<u>b. C₂H₂:</u>

  • 2C₂H₂ (g) + 5O₂ (g) → 4CO₂(g)  + 2H₂O (g)

The mole ratio for this reaction is 2 mol C₂H₂ :5 mol O₂.

<u>с. С₃Н₈</u>

  • C₃H₈ (g) + 5O₂ (g) → 3CO₂(g)  + 4H₂O (g)

The mole ratio is 1 mol C₃H₈ : 5 mol O₂

<u>d. C₂H₆</u>

  • 2C₂H₆ (g) +7 O₂ (g) → 4CO₂(g)  + 6H₂O (g)

The mole ratio is 2 mol C₂H₆ : 7 mol O₂

7 0
3 years ago
If i have 8 L of 0.25 M solution, how many miles of MgCl2 are present
qaws [65]

Answer:

2 moles

Explanation:

The following were obtained from the question:

Molarity = 0.25 M

Volume = 8L

Mole =?

Molarity is simply defined as the mole of solute per unit litre of solution. It is represented mathematically as:

Molarity = mole of solute/Volume of solution.

With the above equation, we can easily find the number of mole of MgCl2 present in 8 L of 0.25 M MgCl2 solution as follow:

Molarity = mole of solute/Volume of solution.

0.25 = mole of MgCl2 /8

Cross multiply to express in linear form

Mole of MgCl2 = 0.25 x 8

Mole of MgCl2 = 2 moles

Therefore, 2 moles of MgCl2 are present in 8 L of 0.25 M MgCl2 solution

4 0
3 years ago
Jenny places a strip of pH paper into a solution. When she removes the pH paper, it has turned yellow-green.
Ronch [10]
Jenny puts the ph paper and lines it up PH SCALE to find how strong the solution.
4 0
3 years ago
Read 2 more answers
The following exothermic reaction is allowed to reach equilibrium. What
Anon25 [30]
The answer is gonna be the last one :)
5 0
3 years ago
Other questions:
  • 2 FONS
    9·1 answer
  • Find the volume of 4.5 moles of H2
    7·1 answer
  • A type of covalent bond in which electrons are shared unevenly
    7·1 answer
  • What can you conclude about the classification of krypton?
    8·1 answer
  • he decomposition of acetaldehyde, CH3CHO, was determined to be a second order reaction with a rate constant of 0.0771 M-1 s-1. I
    13·1 answer
  • Consider an atom that has an electron in an excited state. The electron falls to a lower energy level. What effect does that hav
    12·1 answer
  • The mineral magnesite contains magnesium carbonate, MgCO3 (molar mass= 84 g/mol), and other impurities. When a 1.26-g sample of
    9·2 answers
  • To the person willing to give me a hand, I will upvote, friend, spam, and write something on their wall.
    5·1 answer
  • What is T1 in Kelvin?<br> 0 26K<br> 178K<br> 299K<br> 451K
    10·2 answers
  • 50.0 g of nitrogen gas (N2 ) are kept under pressure in a 3.00 L container. If the pressure is kept constant, how many moles of
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!