Withdrawal is the answer to your question.
Answer:
The correct option is;
4 percent ionic, 96 percent covalent, 222 pm
Explanation:
The parameters given are;
Phosphorus:
Atomic radius = 109 pm
Covalent radius = 106 pm
Ionic radius = 212 pm
Electronegativity of phosphorus = 2.19
Selenium:
Atomic radius = 122 pm
Covalent radius = 116 pm
Ionic radius = 198 pm
Electronegativity of selenium= 2.55
The percentage ionic character of the chemical bond between phosphorus and selenium is given by the relation;
Using Pauling's alternative electronegativity difference method, we have;
![\% \, Ionic \ Character = \left [18\times (\bigtriangleup E.N.)^{1.4} \right ] \%](https://tex.z-dn.net/?f=%5C%25%20%5C%2C%20Ionic%20%5C%20Character%20%3D%20%5Cleft%20%5B18%5Ctimes%20%28%5Cbigtriangleup%20E.N.%29%5E%7B1.4%7D%20%20%5Cright%20%5D%20%5C%25)
Where:
Δ E.N. = Change in electronegativity = 2.55 - 2.19 = 0.36
Therefore;
![\% \, Ionic \ Character = \left [18\times (0.36)^{1.4} \right ] \% = 4.3 \%](https://tex.z-dn.net/?f=%5C%25%20%5C%2C%20Ionic%20%5C%20Character%20%3D%20%5Cleft%20%5B18%5Ctimes%20%280.36%29%5E%7B1.4%7D%20%20%5Cright%20%5D%20%5C%25%20%3D%204.3%20%5C%25)
Hence the percentage ionic character = 4.3% ≈ 4%
the percentage covalent character = (100 - 4.3)% = 95.7% ≈ 96%
The bond length for the covalent bond is found adding the covalent radii of both atoms as follows;
The bond length for the covalent bond = 106 pm + 116 pm = 222 pm.
The correct option is therefore, 4 percent ionic, 96 percent covalent, 222 pm.
ATP synthesis in human cells and energy metabolism.
Answer:
22.29%
Explanation:
Percent yield = experimental yield / theoretical yield * 100
= 12.89 / 57.82 * 100 = 22.29%
Organic compounds that contain only hydrogens and carbons are known as hydrocarbons. Hydrocarbons can be saturated or unsaturated in nature. Saturated hydrocarbons are those which contain only carbon-carbon single bonds whereas unsaturated hydrocarbons contain carbon-carbon double or triple bonds. Hydrocarbons can undergo several reactions like substitution, elimination etc.
When one or more hydrogen atoms in hydrocarbon are substituted with halogen it results in the formation of haloalkane. Due to which the molecular weight increases as the halogen atoms are large compared to the carbon and hydrogen atoms. The bond becomes polar due to the presence of electronegative halogen atom and thus results in the increase in boiling point of the haloalkane.
Thus, the boiling point of the new compound increases on substituting a hydrogen atom with a halogen in a hydrocarbon.