Answer:
built a special cavity where the electromagnetic quantum states resonate with the natural vibrations of the atoms. In doing so, one cancouple a photon-based oscillator to a mechanical oscillator, controlling the mechanical quantum states with visible light. The result is a prototype of a quantum transducer, a device that converts light energy into mechanical energy (sound energy)
Explanation:
Sound energy is created by vibrating particles of medium that propagates as a wave. So in order to convert light (electromagnetic wave) to sound wave it has to be converted into electric or magnetic signals. Then these signals can be converted into sound waves.
However, if you consider the particle nature of light. It contains momentum and after collision sets the other particles into oscillatory motion but the wavelength of these vibrations is too high to be considered as sound waves.
its volume this is the answer because the mercury will turn into gas. gas has more volume because it takes up more space as it spreads.
Answer:
0.238 M
Explanation:
A 17.00 mL sample of the dilute solution was found to contain 0.220 M ClO₃⁻(aq). The concentration is an intensive property, so the concentration in the 52.00 mL is also 0.220 M ClO₃⁻(aq). We can find the initial concentration of ClO₃⁻ using the dilution rule.
C₁.V₁ = C₂.V₂
C₁ × 24.00 mL = 0.220 M × 52.00 mL
C₁ = 0.477 M
The concentration of Pb(ClO₃)₂ is:

To solve this we use the equation,
M1V1 = M2V2
where M1 is the concentration of the stock
solution, V1 is the volume of the stock solution, M2 is the concentration of
the new solution and V2 is its volume.
65 x V1 = 2 x 200 L
V1 = 6.15 L
Answer:
Group 1 and 2 elements
Explanation:
Nitrogen, a non-metal will form ionic bonds with most group 1 and group 2 metals on the periodic table.
How does ionic bonds form?
- They are bonds formed between a highly electronegative specie and one with very low electronegativity.
- As such, ionic bonds forms between metals and non-metals
- In this bond type, the metal due to its electropositive nature will transfer electrons to the non-metals for it to gain.
- The non-metals becomes negatively charged as the metal is positively charged.
- The electrostatic attraction between the two specie leads to the formation of ionic bonds.
Most metals in group 1 and 2 fits in this description. Some of them are calcium, magnesium, lithium, Barium e.t.c.
It mostly favors group 2 metals.