Answer:
ΔG = -61.5 kJ/mol (<u>Spontaneous process</u>)
Explanation:
2 NO (g) + O₂ (g) ⇄ 2NO₂ (g)
Let's apply the thermodynamic formula to calculate the ΔG
ΔG = ΔG° + R .T . lnQ
We don't know if the gases are at equilibrium, that's why we apply Q (reaction quotient)
ΔG = - 69 kJ/mol + 8.31x10⁻³ kJ/K.mol . 298K . ln Q
How can we know Q? By the partial pressures (Qp)
P NO = 0.450atm
PO₂ = 0.1 atm
PNO₂ = 0.650 atm
Qp = [NO₂]² / [NO]² . [O₂]
Qp = 0.650² / 0.450² . 0.1 = 20.86
ΔG = - 69 kJ/mol + 8.31x10⁻³ kJ/K.mol . 298K . ln 20.86
ΔG = -61.5 kJ/mol (<u>Spontaneous process</u>)
Answer:
21883.75 Joules are required to melt the ice!
Answer:
The second one is the answer
Answer:
Fe³⁺(aq) + 3 OH⁻(aq) → Fe(OH)₃(s)
Explanation:
First, we will write the molecular equation because it is the easiest to balance.
FeCl₃(aq) + 3 KOH(aq) → Fe(OH)₃(s) + 3 KCl(aq)
The full ionic equation includes all the ions and the molecular species.
Fe³⁺(aq) + 3 Cl⁻(aq) + 3 K⁺(aq) + 3 OH⁻(aq) → Fe(OH)₃(s) + 3 K⁺(aq) + 3 Cl⁻(aq)
The net ionic equation includes only the ions that participate in the reaction and the molecular species.
Fe³⁺(aq) + 3 OH⁻(aq) → Fe(OH)₃(s)
Consider you have a mixture of amino acids(contains all set of amino acids such as polar, non polar). Other than TLC, how are you supposed to separate a single amino acid from the mixture without loss of amino acid quantitatively.