Answer:
Electron transport produces 3 ATP molecule(s) per NADH molecule and 2 ATP molecules(s) perFADH 2 molecule.
Explanation:
The mechanism by which ATP is produced is explained by the theory of chemosmotic coupling.
This theory establishes that the synthesis of ATP in cellular respiration comes from an electrochemical gradient existing between the internal membrane and the space of the intermembrane of the mitochondria, through the use of the energy of NADH and FADH2 that have been formed by the rupture of molecules rich in energy, such as glucose.
To help, I drew a diagram. This represents an ionic bond between Na and Cl. Na is giving his single electron to Cl, which is indicated by the arrow, to make Cl full with 8 electrons.
Answer:

Explanation:
Hello!
In this case, since the pH of the given metal is 10.15, we can compute the pOH as shown below:

Now, we compute the concentration of hydroxyl ions in solution:
![[OH^-]=10^{-pOH}=10^{-3.95}=1.41x10^{-4}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-pOH%7D%3D10%5E%7B-3.95%7D%3D1.41x10%5E%7B-4%7DM)
Now, since this hydroxide has the form MOH, we infer the concentration of OH- equals the concentration of M^+ at equilibrium, assuming the following ionization reaction:

Whose equilibrium expression is:
![Ksp=[M^+][OH^-]](https://tex.z-dn.net/?f=Ksp%3D%5BM%5E%2B%5D%5BOH%5E-%5D)
Therefore, the Ksp for the saturated solution turns out:

Best regards!
The answer would be C.
The salt and the water have both undergone physical changes.
Hope this helps!
Places with high altitudes will have cold climates.