Answer:
The answer to your question is P = 1.64 atm
Explanation:
Data
Volume = 2.5 x 10⁷ L
Temperature = 22°C
Pressure = ?
Moles = 1.7 x 10⁶
R = 0.082 atm L/ mol°K
Process
1.- Convert temperature to °K
Temperature = 22 + 273
= 295°K
2.- Use the Ideal gas law to solve this problem
PV = nRT
- Solve for P
P = nRT / V
- Substitution
P = (1.7 x 10⁶)(0.082)(295) / 2.5 x 10⁷
- Simplification
P = 41123000 / 2.5 x 10⁷
- Result
P = 1.64 atm
The correct option is B. To get the number of atom for each compound, each element in the compound will be counted as an atom. For instance, for Fe[ClO4]2, there are 1 atom of Fe, 2 atoms of Cl, and 8 atoms of O, making a total of 11 atoms [1 + 2 + 8= 11]. The other options have less than 11 atoms.
Answer:
Heated water is more dense than melted snow because water as liquid is denser than ice. Ice floats on water, which means that it has less density than water. Heated water is warmer and more dense than melted ice.
Explanation:
<h3>
Answer:</h3>
78.75 K
<h3>
Explanation:</h3>
<u>We are given;</u>
- Initial pressure, P₁ = 500 torr
- Initial temperature,T₁ = 225 K
- Initial volume, V₁ = 3.3 L
- Final volume, V₂ = 2.75 L
- Final pressure, P₂ = 210 torr
We are required to calculate the new temperature, T₂
- To find the new temperature, T₂ we are going to use the combined gas law;
- According to the combined gas law;
P₁V₁/T₁ = P₂V₂/T₂
We can calculate the new temperature, T₂;
Rearranging the formula;
T₂ =(P₂V₂T₁) ÷ (P₁V₁)
= (210 torr × 2.75 L × 225 K) ÷ (500 torr × 3.3 L)
= 78.75 K
Therefore, the new volume of the sample is 78.75 K