Answer:
a) 965,1 lbf
b) 4,5 kg
c) 1,33 * 10^6 dynes
Explanation:
Mass of an object refers to the amount of mattter it cotains, it can be expressed it gr, kg, lbm, ton, etc.
Weight of an object refers to a force, and is the measurement of the pull of gravitiy on an object. It may be definide as the mass times the acceleration of gravity.
w=mg
In Planet Earth, the nominal "average" value for gravity is 9,8 m/s² (in the International System) or 32,17 ft/s² (in the FPS system).
To solve this problem we'll use the following conversion factors:
1 lbf = 1 lbm*ft/s²
1 N = 1 kg*m/s²
1 dyne = 1 gr*cm/s² and 1 N =10^5 dynes
1 ton = 907,18 kg
1 k = 1000 gr
a) m = 30 lbm

b) w = 44 N
First, we clear m of the weight equation and then we replace our data.

c) m = 15 ton
Missing question:
A. [3.40 mol Fe2O3 (s) × 26.3 kJ/1 mol Fe2O3 (s)] / 2
<span>B. 3.40 mol Fe2O3 (s) × 26.3 kJ/1 mol Fe2O3 (s) </span>
<span>C. 26.3 kJ/1 mol Fe2O3 (s) / 3.40 mol Fe2O3 (s) </span>
<span>D. 26.3 kJ/1 mol Fe2O3 (s) – 3.40 mol Fe2O3 (s).
</span>Answer is: B.
Chemical reaction: F<span>e</span>₂O₃<span>(s) + 3CO(g) → 2Fe(s) + 3CO</span>₂<span>(g);</span>ΔH = <span>+ 26.3 kJ.
When one mole of iron(III) oxide reacts 26,3 kJ of energy is required and for 3,2 moles of iron(III) oxide 3,2 times more energy is required.</span>