Since we are given the density and volume, then perhaps we can determine the amount in terms of the mass. All we have to do is find the volume in terms of cm³ so that it will cancel out with the cm³ in the density. The conversion is 1 ft = 30.48 cm. The solution is as follows:
V = (14 ft)(15 ft)(8 ft)(30.48 cm/1 ft)³ = 0.0593 cm³
The mass is equal to:
Mass = (0.00118g/cm³)(0.0593 cm³)
Mass = 7 grams of HCN
Answer:
Increase in temperature = 269.54 °C
Explanation:
We have equation for thermal expansion
ΔL = LαΔT
Change in length, ΔL = 0.08 m
Length, L = 56 m
Coefficient of thermal expansion, α = 5.3 x 10⁻⁶ °C⁻1
Change in temperature, ΔT = T - 253
Substituting
0.08 = 56 x 5.3 x 10⁻⁶ x (T - 253)
(T - 253) = 269.54
T = 522.54 °C
Increase in temperature = 269.54 °C
Answer:
0.41
Explanation:
given,
mass of the car, m = 2290 Kg
initial speed = 10.5 m/s
mass of another car, M = 2780 Kg
distance moved = 2.80 m
coefficient of friction = ?
conservation of energy
m u = (M + m) V
2290 x 10.5 = (2290 + 2780) V
V = 4.74 m/s
using equation of motion
v² = u² + 2 a s
4.74² = 2 x a x 2.8
a = 4.02 m/s²
now using equation
a = μ g
4.02 = μ x 9.8
μ = 0.41
Answer:

Explanation:
We have given number of turns N = 560
Inductance L = 8.9 mH
Current through the coil = 7 mA
Inductance of the coil is given as 
Where N is number of turns I is current and
is flux
So 
The maximum force of static friction is the product of normal force (P) and the coefficient of static friction (c). In a flat surface, normal force is equal to the weight (W) of the body.
P = W = mass x acceleration due to gravity
P = (0.3 kg) x (9.8 m/s²) = 2.94 kg m/s² = 2.94 N
Solving for the static friction force (F),
F = P x c
F = (2.94 N) x 0.6 = 1.794 N
Therefore, the maximum force of static friction is 1.794 N.