1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kaheart [24]
3 years ago
6

A stone is thrown vertically upward with a speed of 15.5 m/s from the edge of a cliff 75.0 m high .

Physics
2 answers:
rjkz [21]3 years ago
5 0

a) 2.64 s

We can solve this part of the problem by using the following SUVAT equation:

s=ut+\frac{1}{2}at^2

where

s is the displacement of the stone

u is the initial velocity

t is the time

a is the acceleration

We must be careful to the signs of s, u and a. Taking upward as positive direction, we have:

- s (displacement) negative, since it is downward: so s = -75.0 m

- u (initial velocity) positive, since it is upward: +15.5 m/s

- a (acceleration) negative, since it is downward: so a= g = -9.8 m/s^2 (acceleration of gravity)

Substituting into the equation,

-75.0 = 15.5 t -4.9t^2\\4.9t^2-15.5t-75.0 = 0

Solving the equation, we have two solutions: t = -5.80 s and t = 2.84 s. Since the negative solution has no physical meaning, the stone reaches the bottom of the cliff 2.64 s later.

b) 10.4 m/s

The speed of the stone when it reaches the bottom of the cliff can be calculated by using the equation:

v=u+at

where again, we must be careful to the signs of the various quantities:

- u (initial velocity) positive, since it is upward: +15.5 m/s

- a (acceleration) negative, since it is downward: so a = g = -9.8 m/s^2

Substituting t = 2.64 s, we find the final velocity of the stone:

v = 15.5 +(-9.8)(2.64)=-10.4 m/s

where the negative sign means that the velocity is downward: so the speed is 10.4 m/s.

c) 4.11 s

In this case, we can use again the equation:

s=ut+\frac{1}{2}at^2

where

s is the displacement of the package

u is the initial velocity

t is the time

a is the acceleration

We have:

s = -105 m (vertical displacement of the package, downward so negative)

u = +5.40 m/s (initial velocity of the package, which is the same as the helicopter, upward so positive)

a = g = -9.8 m/s^2

Substituting into the equation,

-105 = 5.40 t -4.9t^2\\4.9t^2 -5.40 t-105=0

Which gives two solutions: t = -5.21 s and t = 4.11 s. Again, we discard the first solution since it is negative, so the package reaches the ground after

t = 4.11 seconds.

dimulka [17.4K]3 years ago
4 0

Answer:

(a) 5.8s

(b) 41.36m/s

(c) 99.52m

    5.21s

Explanation:

(a) This is the total time it takes the stone to reach its maximum height above the cliff and strike the ground at the base of the cliff after projection.

let the height attained by the stone above the cliff be h_1 and the time taken to attain this height be t_1. We can safely assume acceleration due to gravity to be taken as g=9.8m/s^2.

We use the first equation of motion under free fall to obtain t_1 as follows;

v=u-gt_1............(1)

given: u = 15.5m/s

Where v is the final velocity and u is the initial velocity. The negative sign in the equation indicates the fact that the stone is moving upwards against gravitational pull. The final velocity v=0 at height h_1 because the stone will momentarily at the maximum height come to rest before it begins to fall back downwards.

Hence from equation (1) we obtain the following,

0=15.5-9.8t_1\\9.8t_1=15.5\\hence\\t_1=15.5/9.8\\t_1=1.58s

To get h_1 we use the third equation as follows;

v^2=u^2-2gh_1 ( the body is moving upward so g is negative)

0^2=15.5^2-2*9.8*h_1\\0=240.25-19.6h_1\\19.6h_1=240.25\\therefore\\h_1=240.25/19.6\\h_1=12.26m

Next we obtain the time it takes to fall back from the maximum height downwards to the base of the cliff. Let this time be t_2. We use the second equation of motion.

H=ut+gt_2^2/2............(2)

( g is positive because the stone is falling downwards)

However in this case, u = 0 because the stone is falling freely from rest downwards.

H=h_1+75m=12.26+75\\H=87.26m\\

Substituting into equation (2), we obtain;

87.26=(0*t_2)+9.8t_2^2/2

Simplifying further we obtain;

4.9t_2^2=87.26\\t_2^2=87.26/4.9\\     =17.81\\t_2=\sqrt{17.81}=4.22s

Hence the total time spent in air = 1.58+4.22 = 5.8s

(b) We use the third equation of motion to find the velocity with which the stone strikes the ground.

v^2=u^2+2gH....... (3)

the stone is falling downwards in this case from height H from rest, u = 0, v is the final velocity with which is strikes the ground. Equation (3) can therefore be reduced to the following form by putting u = 0;

v=\sqrt{2gH}\\v=\sqrt{2*9.8*87.26} \\v=41.36m/s

(c) The total distance travelled is given as follows;

H_{total}=h_1+H\\H_{total}=12.26+87.26=99.52m

When the package was dropped from the ascending helicopter, it will be projected upwards with an initial velocity equal to that of the helicopter, attain a maximum height and then fall back downwards. The total time spent in air by the package is the sum of the time it takes to attain maximum height and the time it takes to fall to the ground from the maximum height. This solution is similar to that of part (a) of this question.

To find the time it takes to attain maximum height, we use equation (1): v = 0, u = 5.4m/s and g is negative since the package is moving upward against gravity. Hence;

0^2=5.4^2+9.8t_1\\9.8t_1=5.4\\t_1=5.4/9.8\\t_1=0.55s

Similarly to the previous solution, we obtain the maximum height as follows;

v^2=u^2-2gh_1\\0^2=5.4^2-2*9.8*h_1\\19.6h_1=29.16\\h_1=29.16/19.6\\h_1=1.49m

therefore maximum height is

H = 105+1.49 = 106.49m

The time taken by the package to fall from H to the ground is given by equation (2), where u = 0 since the package is falling from rest; g is positive in this case.

106.49=(0*t)+ 9.8t^2/2\\106.49=4.9t^2\\t^2=106.49/4.9=21.73\\t=\sqrt{21.73}=4.66s

therefore the total time spent by the package before striking the ground is given by;

t_{total}=0.55s+4.66s=5.21s

You might be interested in
Two identical loudspeakers 2.00 m apart are emitting sound waves into a room where the speed of sound is 340 m/s. Abby is standi
Ganezh [65]

Answer:

242.85 Hz

Explanation:

For maximum intensity of sound, the path difference,ΔL = (n + 1/2)λ/2 where n = 0,1,2...

Since Abby is standing perpendicular to one speaker, the path length for the sound from the other speaker to him is L₁ = √(2.00² + 5.50²) = √(4.00 + 30.25) = √34.25 = 5.85 m.

The path difference to him is thus ΔL = 5.85 m - 5.50 m = 0.35 m.

Since ΔL = (n + 1/2)λ/2 and for lowest frequency n = 0,

ΔL = (n + 1/2)λ/2 = (0 + 1/2)λ/2 = λ/4

ΔL = λ = v/f and f = v/4ΔL where f = frequency of wave and v = velocity of sound wave = 340 m/s.

f = 340/(4 × 0.35) = 242.85 Hz

5 0
3 years ago
An unstable nucleus which has a tendency to spontaneously change its form with the emission of high-energy particles or photons
Pepsi [2]

Answer:Radioactive

Explanation:

The radioactive nucleus is the one which does not has enough binding energy to hold the nucleus in a stable state and thus radiates either electron or proton to become a stable element.

A radioactive element is formed when after billions of years such as uranium and thorium. The stability of the nucleus depends upon the opposition of attractive and repulsive force among the nucleus.

6 0
3 years ago
Read 2 more answers
If the _____ work on a simple machine equals the output work, the machine is said to be 100% efficient.
omeli [17]
<h3>Answer:</h3>

Input work

<h3>Explanation:</h3>

Concept being tested: Efficiency of machines

Therefore we need to know what is the efficiency of a machine

  • Efficiency of a machine is the ratio of work output of machine to the work input expressed as a percentage.
  • Thus;

Efficiency = (Work output ÷ Work input) × 100%

  • Therefore, if the work input is equal to the work output then the efficiency of the machine will be 100%.
  • Most machines are not 100% efficient due to loss of energy in form of heat due to friction of the moving parts of the machine.
3 0
3 years ago
Prove dimensionally that: PV=RT
Oduvanchick [21]

Ideal Gas Law PV = nRT

THE GASEOUS STATE
Pressure  atm
Volume  liters
n  moles
R  L atm mol^-1 K^-1
Temperature  Kelvin


pv = rt

divide both sides by v
pv/v = rt/v

p = rt/v

answer: p = rt/v




Ideal Gas Law: Density

PV = NRT
PV = mass/(mw)RT

mass/V = P (MW)/RT = density



Molar Mass:
Ideal Gas Law PV = NRT
PV = mass/(MW) RT
MW = mass * RT/PV


Measures of Gases:
Daltons Law of Partial Pressures; is the total pressure of a mixture of gases equals the sum of the partial pressures of the individual gases.

Total = P_ A + P_ B

P_ A V = n_ A RT

P_ B V = n_ B R T



Partial Pressures in Gas Mixtures:
P_ total = P_ A + P_ B
P_ A = n_ A RT/V P_ B = n_ B RTV

P_ total = P_ A + P_ B = n_ total RT/V




For Ideal Gasses:


P_ A = n_ A RT/V P_ total = n_ toatal RT/V



P_ A/P_ total = n_ A RTV/n_ total RTV


= n_ A/n_ total = X_ A





Therefore, P_ A = X_ A P_ total.



PV = nRT


P pressure

V volume


n Number of moles


R Gas Constant


T temperture (Kelvin.).







Hope that helps!!!!!! Have a great day : )

4 0
2 years ago
If the strength of gravity is 9.8 newtons per kilogram, that means:
Igoryamba
Here, E<span>ach kilogram of mass weighs 9.8 newtons as it's unit value of it.

In short, Your Answer would be Option D

Hope this helps!</span>
4 0
3 years ago
Read 2 more answers
Other questions:
  • A flowerpot falls off a windowsill and falls past the window below. You may ignore air resistance. It takes the pot 0.380 ss to
    7·1 answer
  • The cryosphere is composed of?
    7·1 answer
  • If a sound wave is produced with a wavelength of 1.04m what is the waves frequency
    13·1 answer
  • The diagram represents water waves travelling from deep water into an area of much shallower water.
    11·1 answer
  • !
    14·2 answers
  • Distance is constant and time increseas <br><br>Will Speed increase or decrease?<br><br>​
    5·2 answers
  • What are the property of the image formed by plane mirror​ <br>of class 10
    11·2 answers
  • Consider these two characteristics.
    10·2 answers
  • Your friend is wearing a red coat. When white light hits the coat, some light is reflected, and some is absorbed.
    11·1 answer
  • are the two sources in phase or out of phase? explain how you can tell from the diagram. if the two sources are out of phase, gi
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!