Answer:
b. less than w.
Explanation:
In this question, the application of length contraction is what helps us come to our conclusion. When an object moves very fast (relative to the observer), the length of the object seems to be smaller than it actually is (again, for the observer).
This is supported by the length contraction equation below:
L = 
Here, L is the observed length
is the original length of the object
v is the relative speed between the object and the observer
and c is the speed of light
Using this equation, we can see that as the speed between the object and the observer is increased to be close to that of light, the square root in the equation gives us values less than 1.0
This effectively decreases the length that is observed.
Answer:
The net force acting on the object is doubled while the mass of the object is held constant. What will be the new acceleration? An object has an acceleration of 12.0 m/s^2. The net force acting on the object is halved (decreased to one half its original value) while the mass of the object is held constant.
i believe i could be wrong but i think its kinetic energy.
Heya user☺☺
All options are wrong here.
The correct answer is..
Work/Time.
Hope this will help☺☺