How am I supposed to answer that if I can't get the graph to you?
Answer:
The ball reached its maximum height of (
) in (
).
Step-by-step explanation:
This question is essentially asking one to find the vertex of the parabola formed by the given equation. One could plot the equation, but it would be far more efficient to complete the square. Completing the square of an equation is a process by which a person converts the equation of a parabola from standard form to vertex form.
The first step in completing the square is to group the quadratic and linear term:

Now factor out the coefficient of the quadratic term:

After doing so, add a constant such that the terms inside the parenthesis form a perfect square, don't forget to balance the equation by adding the inverse of the added constant term:

Now take the balancing term out of the parenthesis:

Simplify:

The x-coordinate of the vertex of the parabola is equal to the additive inverse of the numerical part of the quadratic term. The y-coordinate of the vertex is the constant term outside of the parenthesis. Thus, the vertex of the parabola is:

Answer: the function g(x) has the smallest minimum y-value.
Explanation:
1) The function f(x) = 3x² + 12x + 16 is a parabola.
The vertex of the parabola is the minimum or maximum on the parabola.
If the parabola open down then the vertex is a maximum, and if the parabola open upward the vertex is a minimum.
The sign of the coefficient of the quadratic term tells whether the parabola opens upward or downward.
When such coefficient is positive, the parabola opens upward (so it has a minimum); when the coefficient is negative the parabola opens downward (so it has a maximum).
Here the coefficient is positive (3), which tells that the vertex of the parabola is a miimum.
Then, finding the minimum value of the function is done by finding the vertex.
I will change the form of the function to the vertex form by completing squares:
Given: 3x² + 12x + 16
Group: (3x² + 12x) + 16
Common factor: 3 [x² + 4x ] + 16
Complete squares: 3[ ( x² + 4x + 4) - 4] + 16
Factor the trinomial: 3 [(x + 2)² - 4] + 16
Distributive property: 3 (x + 2)² - 12 + 16
Combine like terms: 3 (x + 2)² + 4
That is the vertex form: A(x - h)² + k, whch means that the vertex is (h,k) = (-2, 4).
Then the minimum value is 4 (when x = - 2).
2) The othe function is <span>g(x)= 2 *sin(x-pi)
</span>
The sine function goes from -1 to + 1, so the minimum value of sin(x - pi) is - 1.
When you multiply by 2, you just increased the amplitude of the function and obtain the new minimum value is 2 (-1) = - 2
Comparing the two minima, you have 4 vs - 2, and so the function g(x) has the smallest minimum y-value.
Answer: 
Step-by-step explanation:
<h3>
The complete exercise is: " A circle has a radius of 6. An arc in this circle has a central angle of 330 degrees. What is the arc length?"</h3><h3>
</h3>
To solve this exercise you need to use the following formula to find the Arc lenght:

Where "C" is the central angle of the arc (in degrees) and "r" is the radius.
In this case, after analize the information given in the exercise, you can identify that the radius and the central angle in degrees, are:

Therefore, knowing these values, you can substitute them into the formula:

And finally,you must evaluate in order to find the Arc lenght.
You get that this is:

Answer:
QR = 1
Step-by-step explanation:
PR = PQ + QR
PR = x + 19
PQ = 9
So now put what you know in the equation above.
PR = 9 + 2x + 19
PR also equals x + 19
so
x + 19 = 9 + 2x + 19
x + 19 = 2x + 28
19 - 28 + x = 2x
-9 + x = 2x
-9 = 2x - x
-9 = x
===================
QR = 2x + 19
QR = 2*-9 + 19
QR = -18 + 19
QR = 1
This really is kind of a nasty question. You don't expect to get a minus number of x.