Answer:
Explanation:To find the number of moles of solute in a volume of a solution, we need to multiply volume by concentration. BUT we also need to check that the units are the same. Molarity (M) is moles per liter, so we need to convert 250mL to L.
250mL=0.250L
Now we can multiply the concentration by volume.
0.4M*0.250L
<u>Answer:</u> The rate constant for the reaction at 65°C is 
<u>Explanation:</u>
To calculate rate constant at 65°C of the reaction, we use Arrhenius equation, which is:
![\ln(\frac{K_{65^oC}}{K_{40^oC}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B65%5EoC%7D%7D%7BK_%7B40%5EoC%7D%7D%29%3D%5Cfrac%7BE_a%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= equilibrium constant at 65°C = ?
= equilibrium constant at 40°C = 
= Activation energy of the reaction = 65.5 kJ/mol = 65500 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature = ![40^oC=[40+273]K=313K](https://tex.z-dn.net/?f=40%5EoC%3D%5B40%2B273%5DK%3D313K)
= final temperature = ![65^oC=[65+273]K=338K](https://tex.z-dn.net/?f=65%5EoC%3D%5B65%2B273%5DK%3D338K)
Putting values in above equation, we get:
![\ln(\frac{K_{65^oC}}{5.45\times 10^{-2}})=\frac{65500J/mol}{8.314J/mol.K}[\frac{1}{313}-\frac{1}{338}]\\\\K_{65^oC}=0.350s^{-1}](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B65%5EoC%7D%7D%7B5.45%5Ctimes%2010%5E%7B-2%7D%7D%29%3D%5Cfrac%7B65500J%2Fmol%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B313%7D-%5Cfrac%7B1%7D%7B338%7D%5D%5C%5C%5C%5CK_%7B65%5EoC%7D%3D0.350s%5E%7B-1%7D)
Hence, the rate constant for the reaction at 65°C is 
Answer:
A. Neutral
Explanation:
The products of this reaction are a salt and water.
Answer:
d
Explanation:
the endothermic reaction absorbs heat and exothermic emits heat. If we think of this from increasing the temperature, exothermic already emits heat so it would favor an endothermic reaction. In this instance, a decrease in temperature would do the opposite, which would favor the exothermic reaction.
A boat a board and sea life