5.18mL i hope this helps i hope this does to!
Answer:
True
Explanation:
The volume of water displaced by an object completely submerged is its actual volume. It implies that in the container the object create a space of size for itself which is the volume of the object. This approach is used in calculating the density of many irregular solids from their measured masses.
Answer:
73.88 g/mol
Explanation:
For this question we have to keep in mind that the unknown substance is a <u>gas</u>, therefore we can use the <u>ideal gas law</u>:

In this case we will have:
P= 1 atm
V= 3.16 L
T = 32 ªC = 305.15 ºK
R= 0.082 
n= ?
So, we can <u>solve for "n"</u> (moles):



Now, we have to remember that the <u>molar mass value has "g/mol"</u> units. We already have the grams (9.33 g), so we have to <u>divide</u> by the moles:


Answer:
Answers with detail are given below
Explanation:
1) Given data:
Mass of Rb₃Rn = 76.19 g
Number of moles = ?
Solution:
Number of moles = mass/molar mass
Molar mass = 478.43 g/mol
Number of moles = 76.19 g/ 478.43 g/mol
Number of moles = 0.16 mol
2) Given data:
Mass of FrBi₂ = 120.02 g
Number of moles = ?
Solution:
Number of moles = mass/molar mass
Molar mass = 640.96 g/mol
Number of moles = 120.02 g/640.96 g/mol
Number of moles = 0.19 mol
3) Given data:
Mass of Zn₂F₃ = 88.24 g
Number of moles = ?
Solution:
Number of moles = mass/molar mass
Molar mass = 187.73 g/mol
Number of moles = 88.24 g/ 187.73 g/mol
Number of moles = 0.47 mol
4) Given data:
Number of moles of Sb₄Cl = 1.20 mol
Mass of Sb₄Cl = ?
Solution:
Number of moles = mass/molar mass
Molar mass = 522.49 g/mol
Mass = Number of moles × molar mass
Mass = 1.20 mol × 522.49 g/mol
Mass = 626.99 g