1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GREYUIT [131]
3 years ago
10

For the given equation, y = 4(x) - 1, what is the value of y for x = 2?

Mathematics
2 answers:
AysviL [449]3 years ago
8 0

Answer:

D. 7

Step-by-step explanation:

y= 4(x)-1

<u>First: Let us take away the y =</u>

4(x)-1

As in the question, it says that the value given for x is:

2

So we plug that in

4(2)-1

As in PEMDAS, multiplication becomes before subtraction

We now have

8-1

4*2=8

8-1=7

Therefore,

The answer is...

D. 7

Alik [6]3 years ago
3 0

Answer:

The answer is D (7).

Step-by-step explanation:

If you plug in 2 where x is, you get 4*2 -1, which is 8-1, which equals to 7.

You might be interested in
1. Solve triangle ABC if A = 42.3º, b = 12.9 meters, and c = 15.4 meters.
kumpel [21]

Answer:

a = 10.36m

B = 47.7º

C = 90º

Step-by-step explanation:

we know the angle of A so we do the sin of A; Spoiler: its 0.67

0.67 = a / 15.4

0.67 * 15.4 = a

a = 10.36

----------

B = 90 - 42.3 = 47.7º

6 0
2 years ago
the combined area of two squares is 45 square cm. Each side of one square is twice as long as the side of the other Square. What
Vlad1618 [11]

Answer:

L=6 cm l=3

Step-by-step explanation:

x+y=45


L=2l


Big Square Area


L*L=x


Little Square

l*l=y



Substituting

(L*L)+(l*l)=45

(2l*2l)+(l*l)=45

(4l^2)+(l^2)=45

5l^2=45

l^2=45/5

l^2=9

l=sqrt(9)

l=3

L=2(3)

L=6


4 0
2 years ago
Generate two equivalent fractions for each fraction. Use fraction tiles or number lines.
oksano4ka [1.4K]
Remember that finding common denominators is only one of the strategies for comparing fractions
5 0
2 years ago
If the equation;<br>(3x)² + {27 × (3)^1/k - 15}x + 4 = 0<br>has equal roots find k<br>​
Dima020 [189]

Step-by-step explanation:

\green{\large\underline{\sf{Solution-}}}

Given quadratic equation is

\rm :\longmapsto\:\rm \:  {(3x)}^{2} + \bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15  \bigg)x + 4 = 0

can be rewritten as

\rm :\longmapsto\:\rm \:  {9x}^{2} + \bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15  \bigg)x + 4 = 0

<u>Concept Used :- </u>

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Let's Solve this problem now!!!

On comparing with quadratic equation ax² + bx + c = 0, we get

\red{\rm :\longmapsto\:a = 9}

\red{\rm :\longmapsto\:b = 27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15}

\red{\rm :\longmapsto\:c = 4}

Since, Discriminant, D = 0

\rm \implies\: {b}^{2} - 4ac = 0

\rm :\longmapsto\: {\bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15\bigg)}^{2}  - 4 \times 4 \times 9 = 0

\rm :\longmapsto\: {\bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15\bigg)}^{2}  - 144 = 0

\rm :\longmapsto\: {\bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15\bigg)}^{2}  = 144

\rm :\longmapsto\: {\bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15\bigg)}^{2}  =  {12}^{2}

\rm \implies\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15 =  \:  \pm \: 12

<u>Case - 1</u>

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15 = -  12

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } = -  12 + 15

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } = 3

\rm \implies\:{\bigg[3\bigg]}^{ \dfrac{1}{k} } = \dfrac{1}{9}

\rm \implies\:{\bigg[3\bigg]}^{ \dfrac{1}{k} } = \dfrac{1}{ {3}^{2} }

\rm \implies\:{\bigg[3\bigg]}^{ \dfrac{1}{k} } =  {3}^{ - 2}

\rm \implies\:\dfrac{1}{k}  =  - 2

\bf\implies \:k \:  =  \:  -  \: \dfrac{1}{2}

<em>So, option (b) is Correct. </em>

<u>Case - 2</u>

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15 = 12

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } = 12 + 15

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } = 27

\rm :\longmapsto\:  {\bigg[3\bigg]}^{ \dfrac{1}{k} } = 1

\rm :\longmapsto\:  {\bigg[3\bigg]}^{ \dfrac{1}{k} } =  {3}^{0}

\rm \implies\:\dfrac{1}{k}  =0

<em>which is not possible.</em>

7 0
2 years ago
(x + 3)2 + (x + 3) - 2 = 0​
zhuklara [117]

Answer:

x=-7/3

Step-by-step explanation:

2(x+3)+(x+3)-2=0

2x+6+x+3-2=0

3x+7=0

3x=-7

x=-7/3

8 0
3 years ago
Read 2 more answers
Other questions:
  • ¿Como encontrar los dos puntos de una gráfica?
    9·1 answer
  • What is 119,000,003 in expanded form
    15·1 answer
  • Linda had a garage sale
    15·1 answer
  • Describe in your own words how you can recognize the difference between exponential growth and exponential decay
    5·1 answer
  • Yx*2; use x=7,And y=2
    5·1 answer
  • The legs if an isosceles triangle are (3x^2+4x+2) inches and the base is (4x-5) inches. Find the perimeter of the triangle
    5·1 answer
  • A positive <br> B negative <br> C none<br> D multiple
    13·2 answers
  • Help me pleaseguy3gkyubhukydihuxcgh asdi09adsvbgaxi90 bvsaia9
    5·2 answers
  • -4(x-1)=-3x+13-9-x <br> PLS SOLVE IT STEP BY STEP
    10·2 answers
  • Identify each of the following as rational or irrational.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!