Answer:
The car will travel 30 miles during the 30-minutes period of acceleration.
Explanation:
Given data :
Initial velocity = v₁ = 50 miles/hour
Final velocity = v₂ = 70 miles/hour
Time = t = 30 min = 0.5 hour
Using the definition of acceleration, we find the acceleration (a)
a = (v₂ - v₁) ÷ t
a = (70 - 50) ÷ 0.5
a = 20 ÷ 0.5
a = 40 miles/hour²
Using 3rd equation of motion, we find the distance travel (s)
2as = v₂² - v₁²
2(40)s = 70² - 50²
80 × s = 4900 - 2500
s = 2400 ÷ 80
s = 30 miles
Answer:
V = f λ speed of wave in terms of frequency and wavelength
t = S / V time for wave to travel a distance S
t = 91.4 m / 344.5 m/s = .265 sec time to travel 91.4 m
We are given an object that is speeding up on a level ground.
Let's remember that the gravitational energy depends on the change in height, therefore, if the object is not changing its height it means that the gravitational energy remains constant.
The kinetic energy depends on the velocity. If the velocity is increasing this means that the kinetic energy is also increasing.
Now, every change in velocity requires acceleration and acceleration requires a force. The force and the distance that the object moves are equivalent to the work that is transferred to the object and therefore, the change in kinetic energy. This means that the total energy of the system increases as work is transferred to the mass.
We have that the total energy of the system increases in the form of kinetic energy and that the gravitational potential energy remains constant. Therefore, the diagrams should look like pie charts that grow but the area of the segment of the potential energy stays the same. It should look similar to the following.
New Moon
Waxing Crescent
First Quarter
<span>Waxing Gibbous
</span>Full Moon
<span>Waning Gibbous
</span>Last Quarter
Waning Crescent
;)
Answer:
2.08 s
Explanation:
We are given that
Speed,v=50mph=73.3ft/s
1 mile=5280 feet
1 hour=3600 s
Distance,d=461 ft
t=2.5 s
v'=60 mph=88 ft/s
We have to find the perception reaction time.
Perception reaction distance=


