<u>ALL of the following work assumes NO AIR RESISTANCE:</u>
1). an object moving under the influence of only gravity, and not in orbit; its horizontal velocity is constant, and its vertical motion is accelerated downward at 9.8 m/s²
2). a parabola
3). Horizontal: velocity is constant, acceleration is zero. . . . Vertical: acceleration is 9.8 m/s² downward, velocity depends on whether it was launched, thrown up, thrown down, dropped, etc.
4). a). the one that was thrown horizontally; b). both hit the ground at the same time; c). both hit the ground with the same vertical velocity
5). a). zero; b). zero; c). gravity ... 9.8 m/s² down; d). 3.06 seconds; e). 4.38 m/s; f). 30 m/s g). no; gravity has no effect on horizontal motion
6). a). 1.8 seconds; b). 13.1 meters; c). 17.6 m/s down; d). 7.3 m/s; gravity has no effect on horizontal motion
7). 45 m/s
8). without air resistance, the ball is traveling horizontally at 13 km/hr, and it lands back in your hand
9). a). 4.49 m/s; b). 29.7 m/s
10). 7.24 meters
11). 700 meters
12). A). 103.7 meters ( ! she's in big trouble ! ); B). 17.5 meters
Answer:
you count the squares or messure it
Explanation:
you can raw equal squares about 1 cm wide if possible all equal and count the squares eg theres 10 squares (small hand) so that would be 10cm squared
Given parameters:
Mass of the car = 1000kg
Unknown:
Height = ?
To find the heights for the different amount potential energy given, we need to understand what potential energy is.
Potential energy is the energy at rest due to the position of a body.
It is mathematically expressed as:
P.E = mgh
m is the mass
g is the acceleration due to gravity = 9.8m/s²
h is the height of the car
Now the unknown is h, height and we make it the subject of the expression to make for easy calculation.
h = 
<u>For 2.0 x 10³ J;</u>
h =
= 0.204m
<u>For 2.0 x 10⁵ J;</u>
h =
= 20.4m
<u>For 1.0kJ = 1 x 10³J; </u>
h =
= 0.102m
Answer:
Neither.
Explanation:
When an electron is released from rest, in an uniform electric field, it will accelerate moving in a direction opposite to the field (as the field has the direction that it would take a positive test charge, and the electron carries a negative charge).
It will move towards a point with a higher potential, so its kinetic energy will increase, while its potential energy will decrease:
⇒ ΔK + ΔU = 0 ⇒ ΔK = -ΔU = - (-e*ΔV)
As ΔV>0, we conclude that the electric potential energy decreases while the kinetic energy increases in the same proportion, in order to energy be conserved, in absence of non-conservative forces.
Don’t trust those links they usually pull up your IP