Answer:
y = cot(x - ⅓π) + 2
Step-by-step explanation:
The general equation for a cotangent function with the given properties is
y = Acot(Bx + C) + D, where
A = the stretching factor
π/|B| = the period
C = the phase shift (negative is to the right)
D = the vertical shift
A = 1
π/|B| = π, so1/|B| = 1 and B = 1
C = -⅓π
D = 2
The function is
y = cot(x - ⅓π) + 2
The figure below shows the graph of the function with the given parameters.
Note that the parent function y = cot(x) has the y-axis as an asymptote, so we can measure the phase shift by the movement of the asymptote π units to the right.
Answer:
point R
Step-by-step explanation:
reflection rule for the y-axis
p(x, y)->p'(-x, y)
therefore:
M(-5, -6)->R(5, -6)
The highest common factor of both terms is 4x, so take this out by dividing each term by 4x
8x^2 / 4x = 2x
12x / 4x = 3
So the factored form is:
4x(2x+3)
Answer:
(8n)(-77)=-77(n*8)
We move all terms to the left:
(8n)(-77)-(-77(n*8))=0
We add all the numbers together, and all the variables
8n(-77)-(-77(+n*8))=0
We multiply parentheses
-616n-(-77(+n*8))=0
We calculate terms in parentheses: -(-77(+n*8)), so:
-77(+n*8)
We multiply parentheses
-616n
Back to the equation:
-(-616n)
We get rid of parentheses
-616n+616n=0
We add all the numbers together, and all the variables
=0
n=0/1
n=0
the property is Associative Property
Step-by-step explanation:
this one was kinda hard pls let me know it its right or not
Answer:
5.93 * 10^7
7 represents the amount of times you moved the decimal