Answer:
Step-by-step explanation:
Using limits, it is found that the infinite sequence converges, as the limit does not go to infinity.
<h3>How do we verify if a sequence converges of diverges?</h3>
Suppose an infinity sequence defined by:

Then we have to calculate the following limit:

If the <u>limit goes to infinity</u>, the sequence diverges, otherwise it converges.
In this problem, the function that defines the sequence is:

Hence the limit is:

Hence, the infinite sequence converges, as the limit does not go to infinity.
More can be learned about convergent sequences at brainly.com/question/6635869
#SPJ1
<span>3(2t + 5) = 5t + 25
6t + 15 = 5t + 25
6t - 5t = 25 - 15
t = 10</span>
The solution for this problem would be:
Given that there is 99.999%.
Let denote n as the network servers and p as the reliability of each server.
So the probability that the network uptime = 1 - (1 - p)^n
Therefore, (1-p) ^n = 0.00001
a. x= log(1-.99999)÷log(1-.97)= 3.2833 is the answer
1-(1-.97)^3= 0.99999 + 0.0001 = 1
b. x = log(1-.99999)÷log(1-.88) = 5.43 is the answer
1-(1-.88)^3= 0.99 + 0.0001 = approx 1