1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali [406]
3 years ago
15

Identify the values that create ordered pairs that are solutions to the equation 3x-5y=20

Mathematics
2 answers:
kvasek [131]3 years ago
8 0
The answer to your question is: x=10. y=2
IrinaVladis [17]3 years ago
3 0

Answer:

(5,-1)

(10,2)

Step-by-step explanation:

we have

The ordered pairs that are solutions to the equation 3x-5y=20 are

(5,y),(x,2)

Step 1

Substitute the value of x of the first ordered pair and solve for y in the equation

3(5)-5y=20

5y=15-20

y=-1

The first ordered pair is (5,-1)

Step 2

Substitute the value of y of the second ordered pair and solve for x in the equation

3x-5(2)=20

3x=20+10

x=10

The second ordered pair is (10,2)

You might be interested in
What is the value of x3 . y4 when x<br> 3 and y = 0?
jonny [76]

Answer:

<h2>0</h2>

Step-by-step explanation:

x^3 \times y^4\\\\x = 3\\y =0 \\\\(3)^3\times 0^4\\\\3^3\times\:0^4\\\\\mathrm{Apply\:rule}\:0^a=0\\0^4=0\\\\=3^3\times\:0\\\\\mathrm{Apply\:rule}\:0\times\:a=0\\=0

6 0
3 years ago
Read 2 more answers
A toy company is making a miniature model of a dump truck. The steering wheel on the toy car that is 0.6 cm corresponds to the s
pentagon [3]
I used the 55.2 and the 0.6 to find a ratio of 92:1, so for every cm of toy car steering wheel there are 92 cm of real truck steering wheel. so using this ratio i times the 3.5cm of the toy car windshield by the 92, this gave me the answer of 322cm, which theoretically is the answer of this equation. 322cm.
6 0
3 years ago
3/8 as a decimal is ??
KatRina [158]

Answer:

0.375

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
The length of a square is 256m and the breadth is 238m what is the perimeter
nikitadnepr [17]

The perimeter is 988 meters

Further explanation:

The given square has different length and breadth which means that the given square is a rectangle.

The formula for perimeter of a rectangle is:

P=2L+2W

Given

Length=L=256m

Breadth=W=238m

Putting the values in the formula:

P=2(256)+2(238)\\=512+476\\=988\ meters

The perimeter is 988 meters.

Keywords: Rectangle, Perimeter

Learn more about perimeter at:

  • brainly.com/question/10435816
  • brainly.com/question/10879401

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • Using the quadratic formula to solve 11x^2-4x=1 what are the values of x ?
    10·1 answer
  • How would you write 105% as a decimal.
    5·2 answers
  • (a) Write 389% as a decimal.<br> (b) Write 0.005 as a percentage.
    14·1 answer
  • What is x+(x+70)+28=180
    13·1 answer
  • (x + y + 3)(x + y - 4)
    14·1 answer
  • A driver's education course compared 1,500 students who had not taken the course with 1,850 students who had. Of those students
    12·1 answer
  • Hi can you please help me with this question. Which is the least value of the five numbers below. 11.03. 11.04 11.1. 11.003. 11.
    11·1 answer
  • PLS ANSWER WILL MAKE BRAINLIEST
    14·1 answer
  • Which class has a ratio of girls to total students of 7:10?
    5·1 answer
  • PLEASE HELP<br><br> x = ___ units
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!