Answer:
The answer to this question is False
Answer:
The amount of electrons that flow in the given time is 3.0 C.
Explanation:
An electric current is defined as the ratio of the quantity of charge flowing through a conductor to the time taken.
i.e I =
...................(1)
It is measure in Amperes and can be measured in the laboratory by the use of an ammeter.
In the given question, I = 1.5A, t = 2s, find Q.
From equation 1,
Q = I × t
= 1.5 × 2
= 3.0 Coulombs
The amount of electrons that flow in the given time is 3.0 C.
Answer:
The potential difference is 121.069 V
Solution:
As per the question:
Diameter of the cylinder, d = 9.0 cm = 0.09 m
Length of the cylinder, l = 40 cm = 1.4 m
Average Resistivity, 
Current, I = 100 mA = 0.1 A
Now,
To calculate the potential difference between the hands:
Cross- sectional Area of the Cylinder, A = 
Resistivity is given by:



Now, using Ohm's Law:
V = IR

Answer:
the pressure at B is 527psf
Explanation:
Angular velocity, ω = v / r
ω = 20 /1.5
= 13.333 rad/s
Flow equation from point A to B
![P_A+rz_A-\frac{1}{2} Pr_A^2w^2=P_B+rz_B-\frac{1}{2} pr^2_Bw^2\\\\P_B = P_A + r(z_A-z_B)+\frac{1}{2} pw^2[(r_B^2)-(r_A)^2]\\\\P_B = [25 +(0.8+62.4)(0-1)+\frac{1}{2}(0.8\times1.94)\times(13.333)^2[2.5^2-1.5^2] ]\\\\P_B = 25 - 49.92+551.79\\\\P_B = 526.87psf\\\approx527psf](https://tex.z-dn.net/?f=P_A%2Brz_A-%5Cfrac%7B1%7D%7B2%7D%20Pr_A%5E2w%5E2%3DP_B%2Brz_B-%5Cfrac%7B1%7D%7B2%7D%20pr%5E2_Bw%5E2%5C%5C%5C%5CP_B%20%3D%20P_A%20%2B%20r%28z_A-z_B%29%2B%5Cfrac%7B1%7D%7B2%7D%20pw%5E2%5B%28r_B%5E2%29-%28r_A%29%5E2%5D%5C%5C%5C%5CP_B%20%3D%20%5B25%20%2B%280.8%2B62.4%29%280-1%29%2B%5Cfrac%7B1%7D%7B2%7D%280.8%5Ctimes1.94%29%5Ctimes%2813.333%29%5E2%5B2.5%5E2-1.5%5E2%5D%20%20%5D%5C%5C%5C%5CP_B%20%3D%2025%20-%2049.92%2B551.79%5C%5C%5C%5CP_B%20%3D%20526.87psf%5C%5C%5Capprox527psf)
the pressure at B is 527psf
Answer:
Number of electrons, 
Explanation:
It is given that,
Charge, q = 4.33 C
We need to find the number of electrons that make 4.33 C of charge. According to quantization of charge as :

n = number of electrons
e = electron's charge



So, the number of electrons are
Hence, this is the required solution.