1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Helen [10]
3 years ago
7

A ball is attached to a string of length 3 m to make a pendulum. The pendulum is placed at a location that is away from the Eart

h's surface by three times the radius of the Earth. What is the acceleration due to gravity (in m/s2) at that height and what is the period (in s) of the oscillations
Physics
1 answer:
Musya8 [376]3 years ago
4 0

1) 0.61 m/s^2

2) 13.9 s

Explanation:

1)

The acceleration due to gravity is the acceleration that an object in free fall (acted upon the force of gravity only) would have.

It can be calculated using the equation:

g=\frac{GM}{r^2} (1)

where

G is the gravitational constant

M=5.98\cdot 10^{24} kg is the Earth's mass

r is the distance of the object from the Earth's center

The pendulum in the problem is at an altitude of 3 times the radius of the Earth (R), so its distance from the Earth's center is

r=4R

where

R=6.37\cdot 10^6 m is the Earth's radius

Therefore, we can calculate the acceleration due to gravity at that height using eq.(1):

g=\frac{GM}{(4R)^2}=\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24})0.}{(4\cdot 6.37\cdot 10^6)^2}=0.61 m/s^2

2)

The period of a simple pendulum is the time the pendulum takes to complete one oscillation. It is given by the formula

T=2\pi \sqrt{\frac{L}{g}}

where

L is the length of the pendulum

g is the acceleration due to gravity at the location of the pendulum

Note that the period of a pendulum does not depend on its mass.

For the pendulum in this problem, we have:

L = 3 m is its length

g=0.61 m/s^2 is the acceleration due to gravity (calculated in part 1)

Therefore, the period of the pendulum is:

T=2\pi \sqrt{\frac{3}{0.61}}=13.9 s

You might be interested in
A ball is thrown vertically upwards with an initial velocity of 20.00 m/s. Neglecting air resistance, how long is the ball in th
algol [13]

Answer:

1) The greatest height attained by the ball equals 20.387 meters.

2) The time it takes for the ball to reach 15 meters approximately equals 1 second.

Explanation:

The greatest height will be attained when the ball stop's in the air and starts falling back to the earth.

thus using third equation of kinematics we obtain the height attained as

v^2=u^2+2as

where

'v' is the final speed of the ball

'u' is the initial speed of the ball

'a' is the acceleration that the ball is under which in this case equals 9.81 m/s^{2}

's' is the distance it covers

Thus for maximum height applying the values in the equation we get

0=20^{2}-2\times 9.81\times h\\\\\therefore h=\frac{20^{2}}{2\times 9.81}=20.387meters

Using the same equation we can find the speed of the ball when it reaches 15 meters of height as  

v^2=20^{2}-2\times 9.81\times 15\\\\v^{2}=105.7\\\\\therefore v=10.28m/s

the time it takes to reduce the velocity to this value can be found by first equation of kinematics as

v=u+at\\\\t=\frac{v-u}{a}\\\\t=\frac{10.28-20}{-9.81}=0.991seconds\approx 1second

4 0
3 years ago
Momentum=mass X velocity
Sliva [168]

Answer:

Hope it helped

stay safe, mark BRAINLIEST

6 0
3 years ago
A 6.0-cm-diameter horizontal pipe gradually narrows to 4.0 cm. When water flows through this pipe at a certain rate, the gauge p
denpristay [2]

Answer:

a n c

Explanation:

3 0
3 years ago
Why are all bodies in nature electrically neutral? short answer please​
DENIUS [597]

Answer: because they have equal numbers of protons

Explanation: Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). If an atom gains or loses one or more electrons, it becomes an ion

3 0
2 years ago
When you push a 2.00 kg book resting on a tabletop it takes 4.60 N to start the book sliding. What is the coefficient of static
natali 33 [55]

The coefficient of static friction is 0.234.

Answer:

Explanation:

Frictional force is equal to the product of coefficient of friction and normal force acting on any object.

So here the mass of the object is given as 2 kg, so the normal force will be acting under the influence of acceleration due to gravity.

Normal force = mass * acceleration due to gravity

Normal force = 2 * 9.8 = 19.6 N.

And the frictional force is given as 4.6 N, then

Coefficient of static friction = Frictional force/Normal force

Coefficient of static friction = 4.6 N / 19.6 N = 0.234

So the coefficient of static friction is 0.234.

3 0
3 years ago
Other questions:
  • Which of the following athletes did not have an eating disorder?
    10·1 answer
  • A rock is thrown 0.8 meters into the air. how fast was it thrown?
    7·1 answer
  • An astronaut of mass m in a spacecraft experiences a gravitational force F=mg when stationary on the launchpad.
    15·1 answer
  • 2. When an object moves in a circular path, it accelerates toward the center of the circle
    15·2 answers
  • The process by which metamorphic rock changes to igneous rock begins with?
    15·1 answer
  • Three 5 Ohm resistors are connected in series to a 10 Volt power supply. What is the current through each resistor?​
    10·1 answer
  • What happened to the maximum height of consecutive swings
    6·1 answer
  • Please Help! (15 POINTS)
    15·1 answer
  • If you throw an apple towards the sky why its going up in spite of gravitational pull?
    7·2 answers
  • Need help in the question that is down
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!