Answer:
Final Length = 30 cm
Explanation:
The relationship between the force applied on a string and its stretching length, within the elastic limit, is given by Hooke's Law:
F = kΔx
where,
F = Force applied
k = spring constant
Δx = change in length of spring
First, we find the spring constant of the spring. For this purpose, we have the following data:
F = 50 N
Δx = change in length = 25 cm - 20 cm = 5 cm = 0.05 m
Therefore,
50 N = k(0.05 m)
k = 50 N/0.05 m
k = 1000 N/m
Now, we find the change in its length for F = 100 N:
100 N = (1000 N/m)Δx
Δx = (100 N)/(1000 N/m)
Δx = 0.1 m = 10 cm
but,
Δx = Final Length - Initial Length
10 cm = Final Length - 20 cm
Final Length = 10 cm + 20 cm
<u>Final Length = 30 cm</u>
Answer:
Measuring, comparing and estimating liquid volumes are taught using metric units like liters and milliliters and customary units like quart, pints, gallons and more. Capacity is actually the amount of liquid in the container, which is also the volume of a liquid.
Explanation:
Answer:
521 nm
Explanation:
Given the values and units we are given, I'm assuming 5.76*10^14 Hz is frequency.
The formula to use here is λ * υ = c, where λ is wavelength, υ is frequency, and c is the speed of light.
λ = 
Answer:
A force is a push or pull upon an object resulting from the objects interaction with another object
According to the Jefferson lab, "The scientific definition of work is: using a force to move an object a distance (when both the force and the motion of the object are in the same direction.)"