No it is not the same thing.
Answer:
.
Step-by-step explanation:
The equation of a circle of radius
centered at
is:
.
.
Differentiate implicitly with respect to
to find the slope of tangents to this circle.
![\displaystyle \frac{d}{dx}[x^{2} + y^{2}] = \frac{d}{dx}[25]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5E%7B2%7D%20%2B%20y%5E%7B2%7D%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B25%5D)
.
Apply the power rule and the chain rule. Treat
as a function of
,
.
.
.
That is:
.
Solve this equation for
:
.
The slope of the tangent to this circle at point
will thus equal
.
Apply the slope-point of a line in a cartesian plane:
, where
is the gradient of this line, and
are the coordinates of a point on that line.
For the tangent line in this question:
,
.
The equation of this tangent line will thus be:
.
That simplifies to
.
You can solve a system with variables by:
1. Pick any two pairs of equations from the system.
2. Eliminate the same variable from each pair using the Addition/Subtraction method
3. Solve the system of the two new equations using the Addition/Subtraction method
4. Substitute the solution back into one of the original equations and solve for the third variable
5. check by plugging the solution into one of the other three equations
For the first one, you did good. I will just suggest a couple things.
Statement Reason
JK ≅ LM Given
<JKM ≅ < LMK Given (You did both of these steps so well done.)
MK ≅ MK Reflexive Property (Your angle pair is congruent but isn't one of the interior angle of the triangles you are trying to prove.)
ΔJMK ≅ ΔLKM SAS
Problem 2: (You also have a lot of great stuff here.)
Statement Reason
DE ║ FG Given
DE ≅ FG Given
<DEF≅<FGH Given
<EDF≅<GFH Corresponding Angles (You don't need to know that F is the midpoint but you got corresponding angle pair which is correct.)
ΔEDF≅ΔGFH ASA
<DFE≅<FHG CPCTC