What I’m seeing on quizlet says what you’re describing is a ball-and-stick model.
If Liquid 1 has a higher specific heat than Liquid 2, then Liquid 1 will take longer to increase in temperature because the higher specific heat of a liquid needs more thermal energy for heating a liquid.
<h3>What is specific heat?</h3>
Specific heat of a substance refers to the quantity of heat that is required to raise the temperature of one gram of a substance by one Celsius degree so we can conclude that Liquid 1 will take longer to increase in temperature
Learn more about heat here: brainly.com/question/24390373
Answer:
Explanation:
Firstly, we have to determine the mass of metal X. We can do that by interpreting the first and second statement mathematically.
Metal X can form 2 oxides (A and B).
A + B = 3g
The mass of oxygen in A is 0.72g and the mass of oxygen in B is 1.16g.
The mass of metal X in the two oxides will be the same because it's the same metal.
Thus, we represent the mass of the metal in the two oxides as 2X.
2X + 0.72 + 1.16 = 3
2X + 1.88 = 3
2X = 3 - 1.88
2X = 1.12
X = 0.56
<u>Thus, 0.56 g of the metal combines with 0.72g of oxygen in A and 1.16 g of oxygen in B.</u>
Thus, mass of metal (X) in 1g of oxygen in A is
0.56g ⇒ 0.72g
X ⇒ 1
X = 1 × 0.56/0.72
X = 0.78 g
Hence, 0.78g of the metal will combine with 1g of oxygen for A
Also, mass of metal (X) in 1g of oxygen in B is
0.56g ⇒ 1.16g
X ⇒ 1g
X = 1×0.56/1.16
X = 0.48 g
Thus, 0.48g of the metal will combine with 1g of oxygen for B
Answer:
Sulfur
Explanation:
Sulfur has 16 valence electrons, as shown in the diagram.