Answer:
-3
Step-by-step explanation:
firstly, -3/12 is not in the simpliest form so we have to simplified it:
-3/12 / 3 = -1/4, now we got:
= (-6*(-1/4)*-4*5) / 10
The upper part of the equation: (-6*(-1/4)*-4*5) can be simplified as:
((-6*-1*-4*5) / 4) / 10
= (-120/4)/10
= -30 / 10
= -3
Hope this help you :3
Answer:

Step-by-step explanation:
![\\ \int\limits^{a}_{0} \int\limits^{x}_{0} \int\limits^{x+y}_{0} {e^{x+y+z}} \, dzdydx \\\\=\int\limits^{a}_{0} \int\limits^{x}_{0} [\int\limits^{x+y}_{0} {e^{x+y}e^z} \, dz]dydx \\\\\\=\int\limits^{a}_{0} \int\limits^{x}_{0} [e^{x+y}\int\limits^{x+y}_{0} {e^z} \, dz]dydx\\\\=\int\limits^{a}_{0} \int\limits^{x}_{0} [e^{x+y}e^z\Big|_0^{x+y}]dydx \\\\\\=\int\limits^{a}_{0} \int\limits^{x}_{0} [e^{x+y}e^{x+y}-e^{x+y}]dydx \\\\\\=\int\limits^{a}_{0} \int\limits^{x}_{0} e^{2x+2y}-e^{x+y}dydx \\\\\\](https://tex.z-dn.net/?f=%5C%5C%20%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20%5Cint%5Climits%5E%7Bx%2By%7D_%7B0%7D%20%7Be%5E%7Bx%2By%2Bz%7D%7D%20%5C%2C%20dzdydx%20%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20%5B%5Cint%5Climits%5E%7Bx%2By%7D_%7B0%7D%20%7Be%5E%7Bx%2By%7De%5Ez%7D%20%5C%2C%20dz%5Ddydx%20%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20%5Be%5E%7Bx%2By%7D%5Cint%5Climits%5E%7Bx%2By%7D_%7B0%7D%20%7Be%5Ez%7D%20%5C%2C%20dz%5Ddydx%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20%5Be%5E%7Bx%2By%7De%5Ez%5CBig%7C_0%5E%7Bx%2By%7D%5Ddydx%20%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20%5Be%5E%7Bx%2By%7De%5E%7Bx%2By%7D-e%5E%7Bx%2By%7D%5Ddydx%20%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20e%5E%7B2x%2B2y%7D-e%5E%7Bx%2By%7Ddydx%20%5C%5C%5C%5C%5C%5C)
![\\=\int\limits^{a}_{0} [\int\limits^{x}_{0} e^{2x}e^{2y}-e^{x+y}dy]dx \\\\\\=\int\limits^{a}_{0} [\int\limits^{x}_{0} e^{2x}e^{2y}dy- \int\limits^{x}_{0}e^{x}e^{y}dy]dx \\\\\\u=2y\\du=2dy\\dy=\frac{1}{2}du\\\\\\=\int\limits^{a}_{0} [\frac{e^{2x}}{2}\int e^{u}du- e^x\int\limits^{x}_{0}e^{y}dy]dx \\\\\\=\int\limits^{a}_{0} [\frac{e^{2x}}{2}\cdot e^{2y}\Big|_0^x- e^xe^{y}\Big|_0^x]dx \\\\\\=\int\limits^{a}_{0} [\frac{e^{2x+2y}}{2} - e^{x+y}\Big|_0^x]dx \\\\](https://tex.z-dn.net/?f=%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5B%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20e%5E%7B2x%7De%5E%7B2y%7D-e%5E%7Bx%2By%7Ddy%5Ddx%20%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5B%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20e%5E%7B2x%7De%5E%7B2y%7Ddy-%20%5Cint%5Climits%5E%7Bx%7D_%7B0%7De%5E%7Bx%7De%5E%7By%7Ddy%5Ddx%20%5C%5C%5C%5C%5C%5Cu%3D2y%5C%5Cdu%3D2dy%5C%5Cdy%3D%5Cfrac%7B1%7D%7B2%7Ddu%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5B%5Cfrac%7Be%5E%7B2x%7D%7D%7B2%7D%5Cint%20e%5E%7Bu%7Ddu-%20e%5Ex%5Cint%5Climits%5E%7Bx%7D_%7B0%7De%5E%7By%7Ddy%5Ddx%20%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5B%5Cfrac%7Be%5E%7B2x%7D%7D%7B2%7D%5Ccdot%20e%5E%7B2y%7D%5CBig%7C_0%5Ex-%20e%5Exe%5E%7By%7D%5CBig%7C_0%5Ex%5Ddx%20%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5B%5Cfrac%7Be%5E%7B2x%2B2y%7D%7D%7B2%7D%20-%20e%5E%7Bx%2By%7D%5CBig%7C_0%5Ex%5Ddx%20%5C%5C%5C%5C)
![\\=\int\limits^{a}_{0} [\frac{e^{4x}}{2} - e^{2x}-\frac{e^{2x}}{2} + e^{x}]dx \\\\\\=\int\limits^{a}_{0} \frac{e^{4x}}{2} -\frac{3e^{2x}}{2} + e^{x}dx \\\\\\=\int\limits^{a}_{0} \frac{e^{4x}}{2}dx -\int\limits^{a}_{0}\frac{3e^{2x}}{2}dx + \int\limits^{a}_{0}e^{x}dx \\\\\\u_1=4x\\du_1=4dx\\dx=\frac{1}{4}du_1\\\\\u_2=2x\\du_2=2dx\\dx=\frac{1}{2}du_2\\\\\\=\frac{1}{8}\int e^{u_1}du_1 -\frac{3}{4}\int e^{u_2}du_2 + \int\limits^{a}_{0}e^{x}dx \\\\\\](https://tex.z-dn.net/?f=%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5B%5Cfrac%7Be%5E%7B4x%7D%7D%7B2%7D%20-%20e%5E%7B2x%7D-%5Cfrac%7Be%5E%7B2x%7D%7D%7B2%7D%20%2B%20e%5E%7Bx%7D%5Ddx%20%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5Cfrac%7Be%5E%7B4x%7D%7D%7B2%7D%20-%5Cfrac%7B3e%5E%7B2x%7D%7D%7B2%7D%20%2B%20e%5E%7Bx%7Ddx%20%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5Cfrac%7Be%5E%7B4x%7D%7D%7B2%7Ddx%20-%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%5Cfrac%7B3e%5E%7B2x%7D%7D%7B2%7Ddx%20%2B%20%5Cint%5Climits%5E%7Ba%7D_%7B0%7De%5E%7Bx%7Ddx%20%5C%5C%5C%5C%5C%5Cu_1%3D4x%5C%5Cdu_1%3D4dx%5C%5Cdx%3D%5Cfrac%7B1%7D%7B4%7Ddu_1%5C%5C%5C%5C%5Cu_2%3D2x%5C%5Cdu_2%3D2dx%5C%5Cdx%3D%5Cfrac%7B1%7D%7B2%7Ddu_2%5C%5C%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B8%7D%5Cint%20e%5E%7Bu_1%7Ddu_1%20-%5Cfrac%7B3%7D%7B4%7D%5Cint%20e%5E%7Bu_2%7Ddu_2%20%2B%20%5Cint%5Climits%5E%7Ba%7D_%7B0%7De%5E%7Bx%7Ddx%20%5C%5C%5C%5C%5C%5C)

Sorry if that took a while to finish. I am in AP Calculus BC and that was my first time evaluating a triple integral. You will see some integrals and evaluation signs with blank upper and lower boundaries. I just had my equation in terms of u and didn't want to get any variables confused. Hope this helps you. If you have any questions let me know. Have a nice night.
Answer:
A on edge
Step-by-step explanation:
Answer:
We have to multiply
⇒39.6 x 5.20 [ Using traditional method]
Traditional method: used by humans when they learnt counting and when fraction came into existence.Suppose something(Area of a field) is divided into parts and another thing(Amount of water used in irrigating the field) is divided into parts and then we have to multiply these two numbers.